
Page 1

Page 2

Page 3

Table of Contents
1 Introduction ... 7

1.1 Application Areas, Focus ... 7
1.1.1 Development .. 8
1.1.2 Production .. 8
1.1.3 Java Routines ... 8

1.2 First Steps .. 8
1.2.1 Basic Terms .. 8
1.2.2 Operating Instructions for The Hasty ..10

1.3 Development Cycles ...13
1.4 Association with Hardware and Other Software ..13

1.4.1 CAESAR ..13
1.4.2 LUCA ...15
1.4.3 PSR ...16
1.4.4 UNIPAS ...16
1.4.5 Java Runtime ...16

1.5 Perspectives ...17
1.6 Ordering, License, Support ...17
1.7 Installation ...18

1.7.1 System Requirements ..18
1.7.2 Earlier Versions ...18
1.7.3 Installation Procedure ..19
1.7.4 Installation Options / Parameters ...20
1.7.5 Installing and Checking the eCom Hardware (Part P)21
1.7.6 Other Required Hardware/Software ...22

1.8 Design and Operating Mode ...22
1.8.1 C/S Architecture ...22
1.8.2 Layer Model ...23
1.8.3 DCOM ...23
1.8.4 WCF and .Net 4.0 ..24
1.8.5 Multitasking (Multi-ECU) ..24
1.8.6 Logs ...24
1.8.7 Vediamo Configuration ..26

2 The Vediamo Modules ...27

2.1 DiagServer ..28
2.1.1 Introduction ..29
2.1.2 Configuration (INI Parameter) ..29
2.1.3 Diagnostic Parameterization ..29
2.1.4 Examples: How can I... ..30

2.2 StartCenter ...32
2.2.1 Structure ..32
2.2.2 Functions of the StartCenter ..32

2.3 System Configuration ..35
2.3.1 Introduction ..35
2.3.2 Structure ..36
2.3.3 The Functions ..41

Page 4

2.3.4 Working with the System Configuration ...54
2.3.5 Special Features ..60
2.3.6 Configuration (INI Parameters) ..61

2.4 Ecoute...61
2.4.1 Introduction ..62
2.4.2 GUI Structure ...63
2.4.3 The Ecoute Files ..68
2.4.4 The Ecoute Functions ..68
2.4.5 The Ecoute Menus ... 155
2.4.6 Keyboard Operation ... 163

2.5 Java Handler Functions .. 166
2.5.1 Vediamo Java Interface ... 166

2.6 Java Programs (Java Routines) .. 167
2.6.1 Introduction .. 167
2.6.2 Executing a Java routine from Ecoute or Another Client 168
2.6.3 Java Program as Standalone Client ... 168
2.6.4 Example: Program, Compile and Execute a Simple Routine 169
2.6.5 Particulars .. 170
2.6.6 Configuration (INI Parameters) .. 171

2.7 BlackBox ... 171
2.7.1 Introduction .. 171
2.7.2 Structure and Function ... 171
2.7.3 BlackBox Functions ... 172
2.7.4 BlackBoxViewer: Log Display at Runtime .. 172
2.7.5 Linking to Other Applications ... 174
2.7.6 Configuration (INI Parameters) .. 174

2.8 PSR Adapter ... 175
2.8.1 Introduction .. 175
2.8.2 Communication between Vediamo and PSR 176
2.8.3 The Functions of the PSR Clients .. 178
2.8.4 Configuration ... 180
2.8.5 The Engine Table .. 181
2.8.6 Examples - how can I... .. 182

2.9 2.9 Worker Client .. 187
2.9.1 Introduction .. 187
2.9.2 Structure .. 188
2.9.3 Function Description .. 189
2.9.4 Examples: How can I... .. 190
2.9.5 Command Line Parameters ... 191
2.9.6 Configuration (INI Parameter) .. 191

2.10 Other Clients ... 192
2.10.1 Flash Station .. 192
2.10.2 DiMeLo .. 193
2.10.3 UVI .. 193
2.10.4 More Clients And Utilities ... 193

2.11 INI Editor ... 193
2.11.1 Menu ... 194
2.11.2 User Interface Areas .. 195
2.11.3 Input Elements ... 195
2.11.4 All INI Parameters .. 196

Page 5

3 How Can I... ... 197

3.1 Connect a Vehicle ... 197
3.2 Connect an ECU without a Vehicle ... 198
3.3 Flash an ECU.. 199
3.4 Restart the Server ... 200
3.5 Read Measurements from an ECU ... 201

3.5.1 Read individual measurements .. 201
3.5.2 Read multiple measurements simultaneously or read measurements

cyclically .. 201
3.6 Read an ECU ID Block .. 201
3.7 Read and Clear an ECUs Error Memory ... 201
3.8 Execute a Quicktest .. 202
3.9 Perform Variant Coding ... 202
3.10 Execute a Java Routine (Java Program) ... 202
3.11 Change the Connection Between K-Line and CAN 203
3.12 Open Ecoute in the Same State I Closed It ... 204

4 Glossary .. 205

5 INI Parameters .. 209

6 PSR Messages .. 226

7 Example: Java Routine .. 237

Page 6

This page intentionally left blank

Page 7

1 Introduction
Vediamo - the distributed diagnostic application for engines (Verteilte Diagnose
Anwendung für Motoren) - is a software system for electronic control unit (ECU)
diagnostics which is integrated in the CAESAR/DIOGENES process chain. It allows
diagnostics on any ECU over K-line as well as CAN, and encompasses all established
protocols from RTMD+, MBISO, KWFB, KW2000 to UDS. Despite its name, Vediamo
is no longer limited only to engine ECUs.

Vediamo is based on the Mercedes-Benz DCDI standard communication platform
CAESAR and hence supports all communication hardware such as, e.g., Part C, Part A,
Part Y, etc. DIOGENES data, used by all diagnostics applications in the company and
which can be drawn from the central TAMINO data base, can be used as diagnostics
data.

Future versions of Vediamo will be set up on the MVCI (ASAM standard) developed by
GSP/ODE and will also support the ODX diagnostics data format.

The implemented client server architecture allows, among other things:

• distributed diagnostics with multiple, simultaneous special client applications,
e.g., test run control over PSR adapter while simultaneously verifying with Ecoute

• Expansion of the system by addition clients,
• Diagnostics, coding, or flashing of multiple ECUs simultaneously

1.1 Application Areas, Focus
Vediamo originally had two user groups in mind: Development and Production.

The system configuration is used to adapt the available ECUs to the user's specific
requirements, e.g., by selecting the standard connector, integration of automatically
executed initialization services, selection of selected services from a longer list, and much
more.

The architecture of the system allows it to be expanded easily by additional
functionalities and even complete applications. This is done primarily using Java
programs, for which Vediamo possesses a simple yet comprehensive connection,
encompassing all ECU functions. Even users with limited programming skills in the
standard language Java can develop their own applications. Generally applicable
functions can subsequently be integrated in the clients by the Vediamo developers (e.g.,
graphic measurement display or the quick test) or be developed as new DCOM clients.

Page 8

1.1.1 Development

The Ecoute client allows interactive access to all available functionalities of one or
multiple ECUs using numerous specialized tools. E.g., access to all available services is
possible, windows can be customized with a selection of different types of services which
can be executed once or periodically; all communication parameters can be modified, any
request messages can be sent to the ECU, and all data streams, procedures and events can
be logged in many specialized formats.

1.1.2 Production

The test bench controller (PSR) adapter as well as the UVI (Unipas-Vediamo Interface)
allows automatic testing without requiring manual changes in the software. The complete
test run is controlled by the test stand controller, which the Vediamo diagnostic server
provides with all the data necessary to control the test runs and evaluate their results. In
order to relieve the test software of diagnostic know-how, the Vediamo clients' TS
adapters and UVI have very simple interfaces, tailored to the needs of the test stand,
which allow effective access to the diagnostic data over a serial line or network
connection.

The flash station allows automated flashing of ECUs.

1.1.3 Java Routines

The Vediamo-Java interface allows customized applications to be generated in the
standard programming language Java without requiring knowledge of diagnostic
protocols, CAESAR-DIOGENES interfaces, or client-server architecture. These Java
programs can serve to either support the clients Ecoute (development) and TS adapter
(engine test facility), or can be used separately as independent applications.

1.2 First Steps
1.2.1 Basic Terms

Communication
hardware

Hardware components (CAESAR, DCDI), which are connected
between the PC and the ECU. The computer needs CAESAR software
(CAESAR-slave library c32s.dll) to operate this hardware, and
possibly hardware drivers.

ECU

Electronic Control Unit. Electronic unit in vehicle which controls the
function of the engine or other systems and which can communicate
for diagnostic purposes with external equipment (tester, PC with
communication hardware) either directly or by way of another ECU
(gateway).

Page 9

System

This term refers to a set of ECUs which are diagnosed at the same
time. The set can consist of either a single or multiple ECUs. Vediamo
allows simultaneous communication with multiple ECUs, depending
on ECU type (K-line or CAN) and the configuration of diagnostic
hardware (number and type of connections, number of hardware
components, ...). Particularly during the quick test, the complete
vehicle is considered as one system and the communication takes
place with all installed ECUs.
A system file (VSB - Vediamo System Binary) is generated for each
system. It is only valid in connection with the parameterization of the
included ECUs (CBF files).
The term system corresponds approximately to the term project in
ASAM systems.

Diagnostic
Service

A function of an ECU that causes a specific action or which sends
information from the ECU to the tester (PC). Typical services are, e.g.,
read measurement results (such as engine temperature), set controller
(throttle valve, etc.), and many more.
Generally for a service, a message is sent from the tester to the ECU
and a reply is received and evaluated. However, the actual number of
sent messages can be greater.

Resource

Hardware connection. For K-line communication (serial connection),
every ECU needs a separate line which can be switched by the
multiplexer or manually with banana plugs. CAN communication
always uses the same CAN bus, but the communication hardware
requires an internal channel per ECU. The number of channels
depends on the CAESAR hardware and software used.

Contact

State in which data exchange with the ECU is possible. The ECU must
be initialized (activated) to establish contact. This state must be
actively maintained by the diagnostic hardware. Only an ECU in
contact state replies to messages from the tester.

Variant coding Special diagnostic service which stores information on the variant
(e.g., on a vehicle's options) in the ECU.

Flashing Most ECUs can be programmed by Vediamo with different
software (firmware). This process is called flashing.

DiagServer Primary module of the Vediamo system. Controls the diagnostic data,
ECU states and coordinates service execution on behalf of clients.

Client Application which executes certain tasks and communicates with
ECUs by way of the DiagServer.

Page 10

1.2.2 Operating Instructions for The Hasty

Hints for the Admin

After Vediamo has been installed (which of course requires Admin privileges), it can be
run without Admin privileges. Since Vediamo accesses numerous files during operation
and also writes in parts of these, certain access privileges may have to be granted.

The Vediamo files are installed into the ALLUSERSPROFILE folder. This folder is
defined in environment variables and depends on the version of the operation system.

In Windows XP Professional it may be:

C:\Documents and Settings\All Users\Application Data\Vediamo

In Windows 7 the folder normally is:

C:\ProgramData\Vediamo

In this folder four subdirectories are created, in which any user has full access rights:

• VediamoData - for Diagnosis data (CBF, VSB etc.)
• VediamoShorttestData - for Shorttest data files
• Config - for INI files, license files and other configuration files
• Log - for Log files created during runtime

The first two folders can be changed during installation.
If an older version of Vediamo was installed, the setup uses the former folders instead of
creating new ones.

If You Have No Diagnostic Hardware and/or License

You can start Vediamo in simulation mode and test its possibilities. This makes it easier
to decide whether Vediamo has the tools you require.

• Install Vediamo with standard settings
• Load the data for selected ECUs from the VEDIAMO intranet homepage, copy

these into the data directory (usually ...\VediamoData)
• Open the Vediamo StartCenter
• From the list under Ecoute select "Simulation" and start Ecoute with a click on the

button.
• Use System / Select to open a system (it contains one or more ECUs)
• Try out all possible functions you find in the menu. These functions offer

practically all the possibilities which CAESAR offers.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_Installation�
http://diagnose.intra.daimlerchrysler.com/vediamo/�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_StartCenter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute�

Page 11

• Some functions are not possible in simulation mode. These include, e.g., flashing,
manual command input and monitoring. All others can be executed, but have less
than fascinating results - e.g., measurement services always return the result "?".
The service Read Errors returns the result "no Errors". However, it is possible to
obtain other results in simulation mode if you have a simulation file for the
appropriate ECU.

• You can uninstall Vediamo completely. Go to System Control / Software /
Vediamo Diagnostic System and select Remove. You can subsequently delete the
path Vediamo in ALLUSERSPROFILE as well as C:\Program Files\Vediamo
along with all the contents.

If You Have Diagnostic Hardware but No License for Vediamo

You can install Vediamo anyway and begin testing in simulation mode (see above). If
you like to test Vediamo in actual operation before you purchase a license, then proceed
as follows:

• First install the CAESAR hardware and, if necessary, the appropriate drivers.
Details can be found on the VEDIAMO intranet homepage, the procedure is
independent of the type of hardware used.

• Select the function "update Vediamo Server / CAESAR" in StartCenter
• Make certain that the CAESAR parts you are using are selected. If uncertainty

exists, multiple entries can be selected. The software recognizes automatically
whether the specified parts are actually connected and addressable.

• Start the "update" function. After a certain amount of time information about the
detected hardware will be displayed.

• Make a note of the displayed serial number(s) of your hardware.
• Order a test license, stating your hardware serial number. One number is

sufficient in case of multiple hardware components.
• As soon as possible (e.g., by email), you will receive a customized VLicence.inf

file. Copy this file into the ...\Vediamo\Configdirectory (usually C:\Documents
and Settings\All Users\Application Data\Vediamo\Config)

• Open the Vediamo StartCenter again and start Ecoute. If no message is displayed
that you do not have a valid license or that no hardware could be found, your
Vediamo is ready for operation.

• Connect the ECU. Exact directions are given below.
• If necessary, download the data for your ECU from the VEDIAMO intranet

homepage and copy these into the directory ...\VediamoDaten.

If You Have both Hardware and A License

After verifying as in the previous steps that Vediamo is installed, the data for your ECU
is copied, the ECU is connected correctly, and the license for your CAESAR hardware is
correctly installed, it is best to begin your work with the StartCenter. You have direct
access there to all installed Vediamo components and their settings.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Simulationof�
http://diagnose.intra.daimlerchrysler.com/vediamo/�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_Associationw_CAESAR�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_OrderingLice�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ConnectanECU�
http://diagnose.intra.daimlerchrysler.com/vediamo/�
http://diagnose.intra.daimlerchrysler.com/vediamo/�

Page 12

The program used most is Ecoute, the interactive client that provides all diagnostic
functionalities. This client, as with all others, only functions when the DiagServer is
running. This is started automatically via DCOM as soon as a client (in this case Ecoute)
wants to access it. Since only one CAESAR instance can be active per computer, the
server is a "singleton". Dependent on the client/server architecture, multiple Ecoute
clients (or other clients which can be installed with Vediamo or programmed yourself,
e.g., with Java) can be used at the same time.

Use the system configuration to generate or modify the system files (it is possible to work
without them, but they make the work significantly easier). If you have modified a
system file, the DiagServer has to be started again, if it is running. The easiest way of
doing this is by ending the Ecoute client and starting it again.

In addition, you will occasionally use the INI editor. It starts when you click on the
Options symbol in the StartCenter.

In case of problems with the software such as crashes, unforeseen events, contact
problems and much more, the BlackBox should be activated by the parameter
[BLACKBOX]run=1 in the file Vediamo.ini. The BlackBox is started then by the server
and runs in the background to log what's "happening". If necessary, the logs from the
BlackBox can be sent by email to the Vediamo team for analysis.

After all INI parameters have been set in accordance to your needs and you wish to work
only with Ecoute, you can start Ecoute directly without the StartCenter. Select Start /
Programs / Vediamo / Ecoute from the Windows menu, or place a shortcut to Ecoute.exe
on the desktop.

Starting Ecoute (or any given Vediamo client) automatically starts the DiagServer.
Ending the last client automatically also ends the DiagServer.

Important:
Stopping the server can take up to 20 seconds. If you start a Vediamo client
before the server is completely ended, this can lead to unstable program results
such as crashes and unrecognized hardware, or similar. In this case, use the task
manager to make sure the process DiagServer is ended (or terminate it yourself),
remove any possible "leftovers" from Ecoute or other clients and then start the
client anew. It is not necessary to restart the computer.

In Case of Problems...

...you should start the BlackBox first. This program creates logs. Then check the
Vediamo file directory. To be able to trace errors, the Vediamo team needs exact
information on the software version used, the settings (Vediamo.ini, can be found in the
program directory ...\Vediamo\Config), specification of your DCDI hardware (type,

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_DiagServer�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#DCOM�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_DesignandOpe_CSArchitectu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_BlackBox�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�

Page 13

serial number), as well as all log files and the exact details on the CAESAR data used by
you. If you have installed Vediamo with the standard configuration, you will find:

• The CAESAR data as well as system files in the directory ...\VediamoDaten
• Files which have been generated for a Vediamo system, such as measurement

result and controller groups, in the subdirectory of ...\VediamoDaten with the
same name as the Vediamo system.

• Program logs and traces of ECU communication in the directory
...\Vediamo\Log and its subdirectories.

• Information on program versions can be found either via file properties / version,
or by starting the program and calling up Info on.... This menu entry can be found
in the main menu "?" in Ecoute. For programs without a user interface
(DiagServer, BlackBox, PSRClient) in the taskbar menu: click on the appropriate
icon , or with the right mouse key and select the item Info on.... This
info window will also tell you which program is actually running and which INI
file is being used.
If you have multiple versions of Vediamo installed at the same time, this
information can help you avoid problems.

1.3 Development Cycles
There is at least one new Vediamo version a year which integrates the most current
CAESAR hardware and software and supports all previous and newly introduced
protocols.

Additional releases are distributed as soon as critical errors, urgent modifications or new
CAESAR versions make this necessary. In the latter case, the Vediamo release follows
the newest CAESAR version by the few weeks required to perform tests and quality
control.

1.4 Association with Hardware and Other Software
1.4.1 CAESAR

The connection to the diagnostic hardware (CAESAR, DCDI) by the appropriate drivers
and libraries forms the base of the Vediamo diagnostic server.

CAESAR hardware and software suppliers can be found here.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_Installation_OtherRequire�

Page 14

The following hardware components are supported:

Page 15

• Part A: PCMCIA card, also requires Part B as well as drivers
• Part C: ISA or PCI plug-in card with a variable number of piggy backs

(processors for parallel diagnostics) and integrated multiplexer
• Part D: "First generation" diagnostic hardware, with serial connector
• Part E: OBD connector cable with integrated multiplexer, is connected to Part

A+B, Y, or similar
• Part F: Connector box for lab set up, can be used in place of Part E but does not

have a multiplexer
• Part J: Pass-through device
• Part P - eCom: also known as MVCI-Device, PDUAPI
• Part X: Diagnostic part with wireless PC connector
• Part Y: Diagnostic part with USB or serial PC connector
• Part W: SDConnect...

Independent of the hardware component used (it is also possible to simultaneously use
several different ones), various CAESAR files (Dynamic Link Library, Release.cmf, INI
files, protocol definitions, etc.), as well as the DIOGENES parameterization in the form
of a CBF file for every ECU to be diagnosed, and possibly other files (CCF coding files,
CFF flashware files, etc.) are required.

Especially the driver software delivered with the hardware must be installed before use.

In case of Part P - eCom, the configuration file slave.ini must contain a proper
RootPath-Entry, depending on the folder the driver software has been installed in.

For further configuration please consult the documentation of the user hardware part(s).

 Important:

The Caesar Hardware: Part A / Part B / Part C / Part Y are not supported in
Windows 7.

1.4.2 LUCA

Langner Universal Communication API (LUCA) from Langner Communications AG in
Hamburg provides a standardized programming interface for different communication
protocols and allows effective protocol enhancements without intervention in the
program flow. The communication between PSR and PSR adapter occurs over serial lines
(3964R protocol) or over LAN (HDLC, TCP/IP) using the LUCA.DLL. The library
LUCA.DLL is delivered together with Vediamo and can be installed (with a PSR
adapter) when required.

It is therefore recommended to implement the same communication software when
developing test bench software. If required, the Vediamo development team delivers code
examples for easier integration of LUCA.

http://www.langner.com/�

Page 16

1.4.3 PSR

Simplicity, robustness, clarity, effectiveness, reliability and error tolerance are all of great
importance in the interaction with the test bench. At the same time, the diversity of the
test programs, different test bench manufacturers, and continually changing ECUs and
their data must be accommodated as well as the requirement that testing time be
optimized on account of the high quantities and the integration in larger processes.

This diversity results in the high elasticity of the PSR adapter as well as the necessity to
design the test bench software just as flexible in accordance with the Vediamo PSR
specification. In particular, the test bench controller cannot assume that the complete
process is static in the sense that the time between certain actions or the sequence of
messages always remains the same. It is possible, e.g., that loading new ECU data can
significantly change the timing of the test run. Even closing a visualization or log
window can result in an appreciable acceleration of reactions.

1.4.4 UNIPAS

This software for controlling test benches is used by Vediamo to communicate using the
special client UVI commands from UNIPAS. Answers from Vediamo are transmitted in
XML format via DCOM (via LAN). UVI has a relatively limited functionality.

1.4.5 Java Runtime

The Java runtime environment from Sun Microsystems is required for running Java
routines. In theory, every standardized Java Runtime should execute the programs
correctly. However, it is recommended to use the included and automatically installed
version. The Vediamo-Java interface is tested with the included version. In addition, all
Java relevant parameters are automatically entered correctly in the Vediamo.ini when
Vediamo is installed.

Integrated External Software

VEDIAMO is installed with components developed by other companies. By installing the
user accepts the license agreements of these modules.

The following modules are used:

Apache Cocoon 2.1.11 Apache License 2.0
Apache XMLSecurity 1.4.5 Apache License 2.0
Apache POI 2.5.1 Apache License 2.0
JDOM 1.1 Apache License 2.0
Xerces-C++ XML Parser Version 3.1.1 Apache License 2.0
Xqilla Apache License 2.0
Java JDK 1.7.0_25 GNU General Public License (GPL)

http://java.sun.com/�

Page 17

Fat Jar Eclipse Plug-In GPL
TinyXml zlib License
CodeSynthesis XSD Data Binding compiler V. 3.3.0 GPL V. 2

1.5 Perspectives
Vediamo will continue to be integrated in the diagnostic process in the future, in the same
timely manner in which Vediamo has always supported all new diagnostic hardware and
been based on the newest available CAESAR software. Vediamo will support the
standardized ASAM server software platform when it is introduced and will continue to
provide the familiar user interface and connection to test benches.

Vediamo-specific data such as system files (VSB), measurement and controller groups
(MWG, STG) can either be assumed from older versions, or Vediamo converts existing
files into the new format.

1.6 Ordering, License, Support
The current Vediamo version as well as data for ECUs can be found on the VEDIAMO
intranet homepage.

A Vediamo license is valid for specific communication hardware, independent of the
computer. The hardware ID numbers are read by the diagnostic server after CAESAR has
been initialized and compared with entries in the license file. If multiple different
hardware components are connected to the computer, it is sufficient that one of them is
licensed - Vediamo can still address all the parts. A list of all found hardware components
with their ID number can be seen in the status window after Ecoute has been started.

If Vediamo is licensed, any desired number of clients can be used separately or
simultaneously. The clients DGR and FlashStation, which require a special license, are
the exception.

The license is valid for a specific version, but only the two first number pairs are relevant,
i.e., the 05.00.00 license applies to all subsequent updates 05.00.xx, but not to 04.02.xx or
05.01.xx.

No license is required for operation in simulation mode. There is no communication with
ECUs in this mode, the data exchange with ECUs is simulated on the server. This mode
is for demonstration purposes, for training, and for testing DIOGENES parameterization.

A functional unlimited but temporary license can be requested for evaluation purposes.

For single or multiple license orders as well as error reporting please contact:

http://diagnose.intra.daimlerchrysler.com/vediamo/�
http://diagnose.intra.daimlerchrysler.com/vediamo/�

Page 18

Mercedes-Benz,
Dept PWT/VEP,
Werk 010 HPC H152,
Fax +49 -(0)711 17 - 7908 1949

Order forms, current information or help with problems/questions can be found online on
the VEDIAMO intranet homepage under Contact.

1.7 Installation
1.7.1 System Requirements

• Pentium-III-PC with 1 GHz (1.5 GHz recommended)
• Windows 2000 or Windows XP or WIndows 7
• 1024 MB RAM memory
• 250 MB available hard disk space for Vediamo in addition to hard disk space for

diagnostic data (5 GB recommended)
• Depending on the communication hardware to be used, either a free PCI or ISA

connector, a USB interface, COM port or PCMCIA slot is required.
• A network connection must exist for distributed application (server and clients on

separate computers).
• A network connection or serial interface (COM port) is used for communication

with the test bench controller.

The diagnostic hardware and if necessary the drivers, have to be installed separately
either before or after installing Vediamo. The appropriate entries have to be made in the
Vediamo.ini settings file after installation to allow the hardware to function with
Vediamo.

Lower PC performance characteristics or a loading from other processes (open
applications, SMS services, virus scanners, etc.) can reduce Vediamo's performance.

1.7.2 Earlier Versions

Dependent on the client-server architecture, no two Vediamo versions can be installed at
the same time. If an earlier version is installed, it must be uninstalled first before the new
version can be installed. However, a copy of the settings(Vediamo.ini) as well as files
generated by the user (system files BSB, measurement and controller groups, etc.) are not
deleted.

http://diagnose.intra.daimlerchrysler.com/vediamo/�

Page 19

If a new version is installed in a directory an earlier Vediamo version was installed, the
Vediamo.ini settings file found there is taken over so that the new Vediamo generally
works exactly like the old one.

Possible changes in the file formats for the new Vediamo version are automatically
applied to the files if required.

1.7.3 Installation Procedure

Vediamo is always delivered as a separate setup program. All system components are
attuned to one another and may not under any circumstances be mixed with components
from other versions (not even release and debug versions with the same version number).
To install, you need admin privileges. If you work with Windows 7, the setup should be
started "As Admin".

During installation, setup checks whether *.ini or *_ini.old settings files are in the
specified path. If this is the case, all settings which are still valid for the new version are
taken over and only new ones are entered. All setting can be modified
subsequently using the INI-Editor.

To uninstall, follow the directions given by Startmenu / Settings / System Control /
Software → Uninstall Vediamo.

1.7.3.1 Alternative Default Settings for Data Paths

The default paths for diagnostic data and for short test data can be overridden by optional
INI files. These files must be stored separately for CAESAR and MVCI usage and they
can contain the following items:

[SERVER]
SystemPfad=[path to diagnostic data
(VSX, SMR-x etc)]

[ECOUTE]
ShortTestDataDir=[path to special set
of diagnostic data (VSX, SMR-x etc) for
short test]

To overwrite the mentioned paths, start the Vediamo Setup with command line
parameters as follows:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 20

VediamoSetup050100.exe /v"OPT_INI_PATH_C=<alternative INI file for
CAESAR>" /v"OPT_INI_PATH_M=<alternative INI file for MVCI>"

"C" and "M" mean Caesar and MVCI.

It is also possible to pass only one file as parameter.

Important

If you change the default or legacy data path, a new directory will be created, but your
data files will not be moved there automatically. This must be done separately.

1.7.4 Installation Options / Parameters

All the user's inputs during installation can be logged. The resulting answer file can be
used to perform silent installations, i.e., Vediamo can be installed on other computers
automatically without user interaction. The selections are then made on the basis of the
log file.

To log the user inputs in the file vediamo.iss, start setup with the following parameter:

VediamoSetup.exe /r /f1"c:\temp\vediamo.iss"

This answer file can be used on other computers to execute setup automatically without
user interaction:

VediamoSetup.exe /s /f1"c:\temp\vediamo.iss"

It is not necessary to enter the filename. In this case, the file "Setup.iss" in the Windows
system directory is created/read.

Important:
If a filename is entered, the complete path must be included even if the file is in
the current directory. No path or relative paths lead to unforeseen results.

For a complete pre-configuration, it is recommended to combine the silent installation
with a pre-installed Vediamo.ini, i.e., generate a batch file which:

1. Generates the installation path with a subdirectory BIN.
2. Copies a prepared Vediamo.ini into the BIN subdirectory.
3. Starts setup with the parameters listed above.

Tips on Silent Installation

• Delete/rename any previous answer files when logging a new answer file.

Page 21

• Do not use answer files from previous Vediamo installations.
• The setup process varies depending on whether an INI file is available or not. An

answer file with INI should therefore only be use with an INI.
• An InstallShield icon is displayed in the Windows taskbar during silent

installation. If this is missing or disappears much too quickly, the installation is
not running.

1.7.5 Installing and Checking the eCom Hardware (Part P)

• To use the eCom Hardware with "USB2LAN Adapter" a driver must be installed.
You find the driver on the
Vediamo Homepage "DCDI Treiber". Alternatively you can get the driver
directlly from ASIX
(http://www.asix.com.tw/products.php?op=pItemdetail&PItemID=97;71;101&PL
ine=71) .

• Interface configuration:
o Switch on the power supply for the eCom Hardware.
o In Network find the correct connection ("ASIX AX88772A USB2.0 to

Fast Ethernet Adapter" or so) and edit the properties. In TCP/IP properties
enter the following fixed

 IP-Address 169.254.255.40
 IP-Address:

 Subnet Mask. 255.255.0.0
• Firewall Settings:

o depending on the used firewall, check if the following ports are opened.
More info is available on the Diagnose Homepage under Tools|Diagnose
Hardware|Driver & Installation eCOM

• Function check:
o Switch on the power supply for the eCom Hardware.(the green LED on

eCom Hardware must burn)

http://www.asix.com.tw/products.php?op=pItemdetail&PItemID=97;71;101&PLine=71�
http://www.asix.com.tw/products.php?op=pItemdetail&PItemID=97;71;101&PLine=71�
http://www.asix.com.tw/products.php?op=pItemdetail&PItemID=97;71;101&PLine=71�

Page 22

o Plug in the USB to LAN adapter
o in ...\Program Files\Vediamo\Caesar\driver\eCom\I+ME Actia GmbH\XS

D PDU API execute the program IME_D_PDU_API_Tester.exe. At the
top select for "D-PDU API DLL" the PDUAPI_I+ME_ACTIA_XS.dll,
press the START button at the bottom. If everything works fine, all check
boxes in the list should be marked after some time..

o The eCom should be recognized by the Vediamo Start-Center now
(otherwise check if eCOM Part P is selected)

1.7.6 Other Required Hardware/Software

DCDI Hardware

Forms and ordering process are included on the VEDIAMO intranet homepage under
Ordering Information / CAESAR Hardware.

Further information on the diagnostic hardware can be found on the Diagnostics Portal.

Driver (DCDI)

Can be found on the VEDIAMO intranet homepage under Downloads / DCDI Driver

Diagnostic Data (VSX, SMR-x & Co.)

Are on the VEDIAMO intranet homepage under Downloads / Diagnostic Data.

Java Development Environment

If you like to program your own Java routines, you will need a development environment.
You can get one free of charge from Eclipse and from Oracle.

1.8 Design and Operating Mode
1.8.1 C/S Architecture

Separating the Vediamo diagnostic system into a server and multiple client components
allow among other things:

• Diagnostics with multiple special client applications at the same time, e.g., test
load control using the PSR adapter while simultaneously checking the
communication on byte level with Ecoute.

• Expanding the system by additional clients such as, e.g., Java programs which
automate certain processes or evaluate data and transmit it to other applications

http://diagnose.intra.daimlerchrysler.com/vediamo/�
http://diagnostics.e.corpintra.net/vidi/protected/main.page�
http://diagnose.intra.daimlerchrysler.com/vediamo/�
http://diagnose.intra.daimlerchrysler.com/vediamo/�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
http://www.eclipse.org/�
http://www.oracle.com/�

Page 23

• Distributed installation: Checking the test processes on multiple computers at the
same time: at the test bench (worker) and in the office (shift manager)

• Simultaneous operation of multiple ECUs, e.g., one ECU can be calibrated while
at the same time another is being flashed

1.8.2 Layer Model

The architecture of the Vediamo system resulted from a requirement for simplest
reusability. The DCOM API makes the effective development of special clients possible.
More than one client at one time can be used (multi client capability).

The SOAP API is a standardized API designed to run OTX sequences and to supply an
easy, plattform independent access for remote systems.

1.8.3 DCOM

DCOM (Distributed Component Object Model) is a Microsoft technology for realizing
distributed client/server applications. It is part of Windows operating systems as of
Version 98 and NT 4.0. Vediamo uses this technology for the client communication with
the diagnostic server.

After installation, Vediamo is immediately ready for operation. No computer reboot nor
system configuration if necessary to run DiagServer and clients.

Page 24

The Vediamo DCOM architecture allows the usage of slim, specialized clients
simultaneously with the standard client (Ecoute). There is no need for universal clients
overloaded with lots of functions used only by few. This makes also the development
cycle shorter and the system more extensible.

1.8.4 WCF and .Net 4.0
Collaboration with engine test stands and standardized test routines needs a platform
independent, well-documented interface. This is offered as a OTX-SOAP-API, based on
HTTP, XML and WSDL. This API can be accessed by other systems via network calls
from every system. It can be a Windows PC, but also any other machine with a Java
Runtime.
The SOAP API is constructed using Windows Communication Foundation (WCF) based
on .NET 4.0. If your machine does not have .NET 4.0, it will be installed by the Vediamo
Setup.

1.8.5 Multitasking (Multi-ECU)

Thanks to multitasking, the Vediamo DiagServer can operate multiple ECUs
simultaneously, up to the full application of all communication channels (CAESAR
resources) and the CPU capability. Since most of the time in ECU communication is
spent waiting for a reply from the ECU, the performance capability of the computer is
optimally applied. It has only become possible with Vediamo multitasking to
simultaneously flash and calibrate two ECUs with only one computer and one CAESAR
hardware.

The application, i.e., the concrete task to be completed, is the focus of the Vediamo
philosophy and not the setup of the hardware. This means, e.g., that measurement results
from different ECUs can be shown at the same time in one output window, while a
number of actuators are adjusted in a different window.

1.8.6 Logs

The log files recorded during runtime are not required for regular operation, but are
necessary for trouble shooting. There are different log types which can be turned on and
off with different INI parameters (see Vediamo Configuration) as required.

The log files are stored in several directories, depending on settings in the INI file. It is
however not necessary to search them - in the Start Center the button "Logfile
administration" opens a list of all log files, where you can pack them into a ZIP archive
or delete them.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_DesignandOpe_VediamoConfi�

Page 25

Program Logging (BlackBox)

Obviously no software is complete error-free. It is therefore possible that Vediamo could
experience a program error. A detailed log of all foregoing activities is necessary in order
to determine the position as well as the exact situation. This is done by a type of software
trip recorder - the BlackBox.

If you have DiagServer or a client crash or other problems with the system functions,
please activate the BlackBox in the INI editor.

These logs are an exception; they are not constantly written to the hard drive but are
recorded in a ring buffer in RAM. If a serious error occurs (client or server crashes) or if
the user requests it, the last 5000 entries (this number can be changed by INI parameter)
are written to a file. These logs contain entries from all Vediamo applications running at
that time. In case a problem occurs, the situation does not have to be recreated with
logging turned on (which does not always guarantee another occurrence of the problem).
Rather, the log is stored after the problem and it does not additionally load the system
during normal operation.

MVCI and Hardware Driver Logs

There are several files logging internal processes of the diagnosis hardware and driver
software of different levels.
You find these files in the following directories:

• MVCI layer: [AllUsersProfile]\Vediamo\DTS\Traces
• PDU-API layer: [AllUsersProfile]\Vediamo\PDU\IME\PDU\logs

The logging depth and paths can be configured in diverse IN and XML configuration
files.

ECU Logs

######## überarbeiten AFEWORK

The communication with an ECU takes place using a communication channel. Channel
specific logs are generated to analyze the communication with individual ECUs:

• The queries and replies from the ECU can be monitored in the Ecoute trace
window either in data block form, or in detail as individual bytes with time
stamps. This can be configured via Ecoute Options / Protocol.

• Channel-specific CAESAR output as well as the ECU communication can be
logged in files on the server side. A file is generated for each communication
channel with a name consisting of the ECU ID and the ending kanal.log. The

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_BlackBox�

Page 26

configuration can be done via Ecoute Options / Protocol or directly by INI
parameters.

Status.log

This log contains all texts which are displayed in the Ecoute status window.

System Configuration Logs

The system configuration generates logs of various processes (e.g., update or consistency
check of a system description). Since the system configuration uses CAESAR, the
outputs generated by CAESER to log the internal processes also result when working
with the system configuration. These outputs can be monitored in the log window at
runtime, but they are also stored in the file VediamoSysConfLog.txt for subsequent
analysis.

1.8.7 Vediamo Configuration

The Vediamo system is configured using the Vediamo.ini file. The file is separated into
sections, each assigned to a system module (DiagServer, CAESAR, clients, Java
connection, or "common" for common parameters). During a new installation the
parameters are set to values which generally allow optimal operation. Some values are
changed during runtime by the applications (e.g., window positions). It is recommended
to only make changes where results are understood and desired. The
 INI-Editor, which also contains a complete description of all parameters, is used for
configuring.

The configuration possibilities for the modules are presented in detail in the following
sections on the Vediamo system modules.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 27

2 The Vediamo Modules
Vediamo consists of several applications (colored blue in the figure):

DiagServer:
This application encapsulates the diagnostic hardware and software, makes their
functionality available to the client applications (local as well as distributed over
LAN), and coordinates client access to the system. The DiagServer manages the
ECU data, establishes communication with the ECUs, executes services, and
delivers results or received information to the client(s). A sophisticated client
administration allows each client to have practically unlimited access to all
necessary functions: the server coordinates the access so that

• requested information reaches only those clients expecting it
• clients do not block one another, but in the worst case just slow each other

down (when using the same communication channels)
• the same information for multiple clients is only acquired once and

distributed to the clients

Clients:

These are the programs which the user sees and operates: Ecoute, Worker-Client,
DGR etc. They are designed for specific tasks - it is their job to exchange data

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_DiagServer�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_WorkerClient�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_OtherClients�

Page 28

with the ECUs over the DiagServer and to process or forward it. At the same
time, the client itself can be a server for a further application, e.g., the PSR
adapter which serves 2 clients: the test bench controller and the worker-client.

System Configuration:
Independent program for generating and editing system descriptions.

BlackBox:
This program is a type of watchdog. It stores log outputs from all Vediamo
modules (servers as well as clients) in RAM, in order to write them into a log file
in case of a crash or other serious problem. In this manner, all of the final events
prior to the occurrence of a problem are stored. This continuous operation
impedes neither the runtime nor the hard drive space.

StartCenter:
A user interface for compact presentation of all important Vediamo elements.

INI Editor:
A program for configuring the Vediamo settings. It contains detailed descriptions
of all parameters.

2.1 DiagServer

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_BlackBox�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_StartCenter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 29

2.1.1 Introduction

The server is the central module of the entire system. Its job is to control the
communication with the ECUs using the available DCDI hardware, to administer the
data, to process and to coordinate the data exchange with the clients.

The DiagServer has no user interface of its own, other than a menu and an info window.
This menu can be accessed via the icon (right mouse key) in the taskbar and
contains the items Info on... and Exit.

The DiagServer has a DCOM interface which allows the clients to access its functions.
Multiple clients can be active in parallel - the coordination of their data exchange is
handled and optimized by the server.

2.1.2 Configuration (INI Parameter)

The Vediamo DiagServer can be configured with the INI-Editor .
The following sections are included in the Vediamo.ini for the DiagServer:

COMMON:
Settings applicable to all Vediamo modules, e.g., the language to use, are found
here.

SERVER:
These are the server-specific settings, e.g., the path for the system descriptions.

CAESAR:
These are for configuring the performance of CAESAR

2.1.3 Diagnostic Parameterization

DiagServer requires a number of files for the data exchange with ECUs:

• CAESAR files, consisting of GBF, CMF, FRM and INI files. They are installed
along with Vediamo in the subdirectory Caesar and must match the CAESAR
software used.

• ECU files: CxF (x represents different characters). They define the ECU
communication parameters and diagnostic services.

• System files VSB. They define systems with one or more ECUs, assign
connection numbers to the ECUs, define lists of services to be displayed to the
user, as well as a number of additional specifications. More on this under System
Configuration.

• Simulation files SIM: These files can be used to try out the Vediamo components
without contacting an ECU.

• Java routines CLASS, JAR: These are Java programs which can be integrated into
the system descriptions VSB to expand the diagnostic functionality.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�

Page 30

Note for JAR files:
When starting a JAR sequence the Java commandline must specifiy the main
class. The server takes this information from the file manifest.mf, which must be
contained in the JAR.

2.1.4 Examples: How can I...
2.1.4.1 End Server ("Kill")

The server ends automatically as soon as the last client ends or is terminated by other
means (crash, ended by task manager). This process can take up to 20 seconds if a client
crashes.
For some problems, however, it can be necessary to end the server process itself. There
are two possibilities of doing this:

• As long as the server is not completely out of control, open the server menu (right
mouse click on the server icon in the taskbar) and select "Exit".

• As a last-ditch effort, even if a crashed server has not released all PC resources,
you can end the process "DiagServer" in the task manager ("Processes" tab).

2.1.4.2 Exchange CAESAR Hardware

Vediamo supports the following CAESAR hardware, which can be activated by
subsequent INI entries:

• Part A (USE_SIPCMCIADriver)
• Part C (USE_SIPartCDriver)
• Part D (USE_SISerialDriver)
• Part E (USE_SIPartEDriver)
• Part J (USE_SIPartJDriver)
• Part P - eCOM Box (USE_SIPartPDriver)
• Part X (USE_SIPartXDriver)
• Part Y (USE_SIPartYDriver)
• Part W (USE_SIPartWDriver)

To exchange or install CAESAR hardware, please proceed as follows:

• Determine which requirements for operation must be met from the manufacturer's
hardware specifications (correct connector, system requirements, required
hardware driver).

• If the manufacturer makes a (software) tool available for checking the
functionality of the hardware, this should be used to verify the functionality.

• Activate the appropriate entry in the "Vediamo.ini" file under "CAESAR" using
the INI-Editor.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 31

• Deactivate all hardware entries which you will not use in the foreseeable future. It
is possible to keep all hardware entries activated, but at the least this increases the
amount of time that CAESAR needs at Vediamo start-up to determine which
hardware is actually connected.

• Start Vediamo anew. The recognized CAESAR hardware is displayed in the
Ecoute application's status window. A function test of connected hardware can be
made using the function "update Vediamo Server / CAESAR" in the StartCenter.

2.1.4.3 Flash CAESAR Hardware with other Firmware

CAESAR software consists of several parts which are structured in different ways.
For example, there is a difference between the CAESAR "master" and CAESAR "slave".

"Master" refers to that part of the CAESAR software which runs directly on the computer
being used and which for example handles the implementation of the available
DIOGENES data or actually interprets the replies from the ECU.

"Slave" is the CAESAR hardware/software which is directly responsible for the
communication with the ECU. This "slave" requires "firmware" for operation, i.e.,
software which generally is stored directly in the non-volatile memory of the CAESAR
hardware (hence the name "firmware").
CAESAR makes different types of firmware available, dependent on the application.
Vediamo supports the operation of the following CAESAR firmware:

CaesarGo:
This firmware usually runs directly in the non-volatile memory of your CAESAR
hardware, e.g., in Part A or Part Y. Supports older communication protocols as
well, e.g., KWFB. The new UDS protocol is not supported.

TLSlave:
This firmware runs on the computer used. The faster the computer, the quicker the
different communication tasks can be completed (e.g., flash processes). Also
allows the simultaneous opening of up to 50 CAN channels. This firmware
supports "newer" protocols as well, e.g., UDS.

BusSim:
This is special firmware which is used to support CAESAR's CAN bus simulation
function.

The setting to determine which firmware to use can be made either in the Startcenter or
with the INI editor (under CAESAR). The diagnostic server must be restarted for a
change to become effective.

2.1.4.4 Try Out DiagServer without Hardware or License (Simulation Mode)

A simulation mode is available in Vediamo in which the communication with an ECU is
simulated on an abstract level without an actual ECU present. The simulation mode can

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Simulationof�

Page 32

be permanently activated by making an INI entry with the INI editor in the "SERVER"
section.
If no valid hardware or license is available only simulation mode is supported. In this
case Ecoute indicates upon starting that the license is unavailable and asks whether
Vediamo should be operated in simulation mode.

2.2 StartCenter
The Vediamo StartCenter is a simple application where all Vediamo programs can be
started and managed from. The program interface contains a graphic display with the
symbols of the separate Vediamo modules and additional tools.

2.2.1 Structure

2.2.2 Functions of the StartCenter

Start Vediamo

A program can be started clicking on the respective symbol or button. For programs
which can be started with command line parameters an option exists to select predefined
starting parameters below the program symbol.
The Vediamo modules can be licensed separately. If a module is not licensed, then the

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 33

label “simulation” is displayed on the respective program symbol, indicating the fact that
this module can be operated only in simulation mode. For modules currently running the
respective program symbol is displayed with green background.

Module Start Options

For modules which can be started with command line parameters (e.g., Ecoute - quick
test), a list of possible start options is displayed below the module symbol.

The behavior of the StartCenter is controlled by means of a text file (StartProfile.txt)
which contains all the information on the modules to be started and the command line
parameters. The text file can be adapted / expanded with a text editor.
If not at least the "Standard" entry is available for a certain module, the related button in
Startcenter appears disabled.

The file has the following structure (for example):

Example:
;Vediamo StartProfile file
;Filename can be given as command line parameter of StartCenter.exe
; e.g., "StartCenter.exe MyProfiles.txt"
;
; File format:
; Ecoute||Profile description||Ecoute.exe||Command line parameter
; System Configuration||Profile description||SystemConfiguration.exe||Command line
parameter
; Worker||Profile description||Werker_Client.exe||Command line parameter

Ecoute||Standard||Ecoute.exe
Ecoute||Quick test||Ecoute.exe||-K
Ecoute||Simulation||Ecoute.exe||/vi "[Server] Simulation 1"
Ecoute||Record simulation data||Ecoute.exe||/vi "[Server] Simulation 2"
System Configuration||Standard||SystemConfiguration.exe
System Configuration||With data import/export in text
format||SystemConfiguration.exe||/VI "[SYSTEMCONFIGURATION]
EnableImportExport 1"
Worker||Standard||Worker_Client.exe

Lines in the file beginning with semicolons are interpreted as comment lines.

Configure Vediamo Programs or Modules

The INI-Editor for managing and editing the INI parameters can be called up using the
symbol "Options" in the StartCenter.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 34

After editing and accepting Vediamo options, a notice is displayed that the
changes become effective only after a Vediamo restart.

Update Diagnostic Hardware

With the function "update Caesar hardware" it can be examined whether the selected
hardware is operational. The status of all detected Caesar parts activated in the
Vediamo.ini and, if possible, their serial number is determined. The numbers of the
accessible parts are displayed on the left side in the field “Vediamo server/Caesar” in a
listbox.

A dialog is showed in which the activation of the used caesar hardware (Part ...) can be
made.
In addition the following entries can be activated:
- Use Part E
- Use Mux mode (Pinmapping)
This controls whether a CAESAR Part E is used during diagnosis and whether
pinmapping is activated. Pinmapping is automatically activated when Part E is used.
- Use TL-Slave firmware or CaesarGo firmware
This controls which firmware the connected CAESAR slave uses. Further information on
this can be found in the CAESAR documentation.
At the bottom of the dialog, available information about the currently detected Caesar
hardware, such as cable ID and security level is displayed.
Changes in these settings immediately take effect for the diagnostic server. Upon exiting
the dialog by pressing the "Update" button, the diagnostic server will be restarted using
the changed settings.

Edit Diagnostic Data

The button "diagnostic data" opens an explorer window in the currently set diag. data
path.

Logfile Administration

By selection of the symbol “logfile administration" down right the dialogue “Trace
Analysis” is displayed with a list of all presently relevant Vediamo log files. Individual
log files can be selected in the dialogue at will. Over a context menu (right mousebutton)
then the following functions can be implemented for the selected files:
- Open file(s) using the standard editor
- Delete file(s)
- Copy the path(s) of the selected file(s) to the clipboard
- Open the path(s) of the selected file(s) in an explorer window
- Copy selected file(s) into a .zip archive

Open Vediamo Help

Page 35

The button User Handbook opens and displays the user documentation.

Version Information

Clicking on the button Version / Info determines and displays the current versions of
Vediamo and CAESAR.

Vediamo Homepage

Clicking on the button Vediamo Homepage opens the Vediamo Hompepage in your
standard internet browser.

2.3 System Configuration

2.3.1 Introduction

The Vediamo system configuration is used to configure an ECU system. With the
Vediamo system configuration, it is possible to:

• Generate system descriptions (VSB files)

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#VSB_Datei�

Page 36

• Filter out measurements, functions, actuators, etc., which may not be used in the
engine test facility. Filter out errors and error environment data which result due
to a missing complete vehicle system. The filter status of an entry is displayed
through the following symbols:

For positive filtered entries. If the particular entry contains further subentries
of which not all are filtered positive, the symbol will be displayed in gray..

For negative filtered entries.

For erroneous entries.

For new, unfiltered entries.
• Reference Java routines
• Create standard objects
• Search for entries

Beside these basic functions, additional functions are available to ensure data consistency
at runtime for an ECU system:

• Updating of the CAESAR data files and Java routine files used in a system
description.

• Consistency check of the data contained in a system description.

The system configuration user interface supports multiple languages. The language is
defined by the entry Language in the [COMMON] section of the configuration data
Vediamo.ini. The following condition must be met in order to work with the system
configuration:

• Correct installation of the Vediamo system configuration portion (especially the
CAESAR data files).

CAESAR Hardware is not required.

2.3.2 Structure

The system configuration is an independent application. Neither CAESAR hardware nor
the Vediamo diagnostics server are required for its operation.

The system configuration user interface is shown in the following figure:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Standard_Objekt�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_Workingwitht_SearchFuncti�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_Installation�

Page 37

The name of the current system description being edited is depicted in the title bar of the
main page. The menu bar for selecting the various program functions is below the name.
Below the menu bar is a symbol bar. Frequently used functions, some which are also
accessible using the menu bar, can be executed by clicking on the symbol with the cursor.
The main page is split vertical into halves. The setup resembles the Windows Explorer
application. In the left half, the system setup is depicted in the form of a tree structure,
while in the right half, the contents of the currently selected elements are shown in form
of a list, and if available, a description of the respective entry is included.Clicking the
column headings in the right half causes an assortment by the contents of the current
column, alternating ascending/descending.

A status line in which various information is displayed, depending on the context, is
located at the bottom of the main page

The Menu bar

The following menu functions are available:

The File menu

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menues�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Symbolleiste�

Page 38

• New
• Open
• Save
• Save as
• Names of last opened files
• Close
• Import
• Export

The Edit menu

• Settings
• Refresh
• Check consistency
• Filter all elements positive
• Filter all elements negative
•

Reverse filter settings

• Automatically change error environment data

The View menu

• Symbol bar
• Status bar
• Log window

The ? menu

• Help topics
• System information

Every entry in the tree structure includes a context menu, a listing of the related functions
accessible through that entry. These menus are made displayed by placing the cursor
over the entry and right-clicking the mouse.

The Symbol bar

The Symbol bar allows the following functions:

 New file
 Open file
 Save file

 Information on the system configuration

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Neu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_EditMenu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Speichern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_SpeichernUnter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_MRU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Beenden�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_ImportExport�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_ImportExport�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Einstellungen�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Aktualisieren�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_KonsistenzCheck�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AllePositivFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AllePositivFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AllePositivFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_FilterUmkehren�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_UDatenAendern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Ansicht_Symbolleiste�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Ansicht_Stausleiste�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Ansicht_Logfenster�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Hilfe_Themen�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Hilfe_Info�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Neu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_EditMenu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Speichern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_Hilfe_Info�

Page 39

 Back: Displays the contents of the immediate superior entry in the list on
the right side of the main window.

The Tree structure

The following entries are possible in the tree structure of the system description:

System

• ECU

• ECU with
• ECU-variants with filter information on the following services:

• Errors
• Environment data

• Measurements
• Actuators
• Adjustments
• Functions
• Procedures
• General Services
• Coding
• Standard objects

o Standard object class coding
o Standard object of the class coding 1 - n

o Standard object class flashing
o Standard objects of the

classification flashing 1 - n
o Standard object class services

o Standard objects of the class services 1 - n
o Standard object user defined class 1

o Standard objects1 - n of the user
defined class 1

o
o Standard object user defined class m

 Standard objects 1 - n of the user
defined class m

• routines

• Java routine 1-n

• Standard objects

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_System�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_ECUs�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_ECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_Services�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_StandardObjekte_ECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_Ablaeufe�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_Standardobjekte�

Page 40

• Standard object class Coding
• Standard object of the class coding 1 - n

• Standard object class flashing
• Standard objects of the class flashing 1 - n

• Standard object class services
• Standard objects of the class services 1 - n

• Standard object user defined class 1
• Standard objects1 - n of the user defined class 1

•
• Standard object user defined class m

o Standard objects1 - n of the user defined class m

Classification of the Diagnostic Services

The base variant and the variants of the ECUs contain a list of services of several types.
Traditionally, these generic services (i.e. anything except special services, as Read DTCs,
Variant Coding, Flashing) have been sorted into one of the following categories:

• Measurements
• Actuators
• Adjustments
• Functions
• Procedures
• Generic Services

The increasing complexity of the ECU data makes it necessary to use another way of
categorizing services. Since version 4.0 there is an alternative category system, based on
the internally in DIOGENES used classes:

• ACTUATOR
• ADJUSTMENT
• BINARY_ACTUATOR
• BINARY_ADJUSTMENT
• DATA
• DATA_COLLECTION
• DOWNLOAD
• FUNCTION
• STATIC
• SYSTEM
• CYCLIC_DATA
• CYCLIC_DATACOLLECTION
• MEMORY_BLOCK
• GLOBAL
• DIAGJOB
• SECURITY

Page 41

• SESSION
• STORED_DATA
• ROUTINE
• IO_CONTROL

When creating a new system description, it must be decided how to categorize the
services. This is dependent on the following parameter in the file Vediamo.ini:

[SYSTEMCONFIGURATION]
ServiceTypes = AUTO | ASK | VEDIAMO | DIOGENES

The ini parameter can have also the following values (to be changed with StartCenter or a
text editor):

• AUTO - In this case the program decides by itselt, which categories to use:
o if the CBF file is created by the old GRIF system, the traditional Vediamo

categories are used
o it the data has been created using the new CANDELA system, the

DIOGENES categories are used.
• ASK - in this case the user has to decide, every time a new ECU is inserted into

the system
• VEDIAMO - all services are to be contained in Vediamo classes
• DIOGENES - all services are to be contained in DIOGENES classes

The default value is "DIOGENES".
The category system is reflected also in the tree view of the system window of Ecoute.

2.3.3 The Functions
2.3.3.1 File Menu

New File

This function creates a new, empty system description. The left window of the tree
structure displays the entry New System.

Open File

This function accesses an existing system description. The file to be opened can be
selected in a file selection window. The file is then read. Before reading the user is
prompted whether an automatic alignment of the file content with the used Caesar files
has to take place. In case of a positive confirmation, during reading the content is
automatically adjusted to match the CAESAR files used. The progress of this action is
displayed in the status bar on the bottom of the screen (ECU name, variant name, service

Page 42

name). If the version of the CAESAR CBF or GBF files has changed since the last file
edit, the user will be asked whether the system should update the entries. The system
description can be edited subsequently.

Save File

The system description can be saved with this function. If the description has not already
been named, a name and the location where the file should be stored must be entered in a
file selection window. The filename should be identical to the system ID, otherwise the
Vediamo diagnostics server may issue a warning that the filename and the system ID do
not match.

Save As

This function saves a previously named file under another name. A name and the location
where the file should be stored can be entered in a file selection window. This makes it
possible to create multiple copies of an existing system description, and subsequently
develop several variations of a system description.

Names of Most Recently Used (MRU) Files

The data menu displays the names of the last four files worked on. These files can be
opened by simply clicking on the selected name.

Close

This function closes the system configuration. If the data of the current file has been
modified, the user is given the opportunity to save the data before the program is closed .

Import / Export

The File menu provides functions to Import and Export system description in text format.
 When using the functions, the appropriate filename must be entered in the file selection
window. the file is then read or written in text format.
System descriptions in text format are given the extension .vst (Vediamo System
description in Text format).
The data appears in the same sequence as in the binary data version (.vsb). A caption is
created for each object (i.e., ECU, variant, actuator, etc.). The associated entries follow
line-by-line. A descriptive text precedes each entry in the respective line.

Example:
ECU---
ObjectType:6
BasisVersion:3
Filter:0

Page 43

Qualifier:CR2
Description:Common-Rail 2.x
Version:4
...
DiagPin:0
DeviceNumber:0
DriverTypeCode:KLINE
TrailRequired:0
...
Important:

Working system descriptions in text format carries a high risk for errors because
the sequence of data must be strictly adhered to. It can be very difficult to locate
errors in the text file.

2.3.3.2 Edit Menu

Settings

In selecting this menu, the following basic settings can be made:

Output level:
This program creates a file VediamoSysConfLog.txt that logs the process and
records any potential errors, as well as any access to CAESAR data files using the
CAESAR API gateway. The selection of an output level determines the degree of
detail of the log information. The following s can be selected:
Module related:
Minimum output
Function related:
The execution of one CAESAR API function is logged.
Internal function details:
Actions during the execution of a CAESAR API are also logged.
Maximum:
All log information made available by CAESAR will be logged. Any errors
which occur are recorded regardless of output level setting.

CAESAR directories:
The directories which contain the applied CAESAR CBF-,GBF- und driver data
files are specified here. The directory name can be entered manually or selected
from a menu.

Display:
In DIOGENES, diagnostic services are entered with a unique ID, called a
qualifier. The qualifier serves to uniquely identify a service. Vediamo processes
always use qualifiers. Each diagnostic service is also provided with a name. This
name is not unique, but does provide the user with a conceptual understanding of
the service. One can choose between the display of qualifiers or the descriptive
names. Simply select the desired setting.

Page 44

Update

A checksum is stored for every CAESAR CBF- , GBF-data file used and every Java
routine referenced in a system description file. During a diagnostics session, with the help
of the checksum, the Vediamo diagnostics server can proofread whether the applied data
matches that of the current configuration, and can exclude a system description where
appropriate.

This function will update the checksum if changes were made to a CAESAR file or a
referenced Java rouotine. In case a referenced file is not found during the update, the
user specifies it using a file selection window. The entire transaction is documented in the
log file as well as in the log window.

Check consistency

This function checks the plausibility of the system description content. In doing so, all
referenced ECU variants, services, and the assignment of services and Java routines to
standard objects are verified. The use of this function can confirm if a referenced service
no longer exists as a result of a changed parameterization. The entire transaction is
documented in the log file as well as in the log window.

Filter all elements positive

This function always refers to the content of the list on the right side of the main page.
With this function, the filter setting of all entries in the list can be set to positive, if filter
setting is possible.
When implementing this function an Include subfiles? information box will appear with
buttons for Yes, No and Cancel. Based upon the selected button, the filter action will or
will not be extended to the subfiles, or will be cancelled.

Filter all elements negative

This function always refers to the content of the list on the right side of the main
page. With this function, the filter setting of all entries in the list can be set to negative, if
filter setting is possible.
When implementing this function an Include subfiles? information box will appear with
buttons for Yes, No and Cancel. Based upon the selected button, the filter action will or
will not be extended to the subfiles, or will be cancelled.

Reverse filter settings

This function always refers to the content of the list on the right side of the main page.
The filter settings of all the entries can be reversed with this function, that is to say, a
previously positive filtered or unfiltered entry is set to be filtered negative or a previously
negative filtered entry is filtered positive.

Page 45

Automatically change error environment data

Depending upon the parameterization, error environment data can be multiply redundant.
This function allows one to control the behavior of the program while it filters the error
environment data. While automatic changing is active, it searches for identical error
environment data in other errors and variants and modifies it accordingly. The activation
of the automatic changing option is designated by a check symbol at the beginning of the
menu line. It is turned on and off by clicking on it with the cursor.

2.3.3.3 Menu View

Symbol bar

This switch turns the symbol bar in the upper part of the screen on or off.

Status bar

This switch turns the status bar in the upper part of the screen on or off.

Log window

This switch turns the window displaying the log information on or off.

2.3.3.4 Menu Help "?"

Help topics

Opens the Vediamo online user manual. Alternatively, the user manual can also be called
up by pressing the F1 key.

Information on the system configuration...

Opens a window with information on the current program version and copyright
information.

System configuration entries

System:

• This entry represents the system description itself.

Functions of the context menus:
Properties: This action pulls up a window in whose general section the following entries
can be made:

Page 46

• The name or ID of the system description. This name also appears as text
in the tree structure entry.

• Description: An arbitrary, descriptive text.
• The name of a Java initialization routine for this system. This name can

be entered manually or selected from a data selection window. This
information is used by the Vediamo Ecoute Client when loading a system:
Once the option "Run initialization routine automatically - after system
selection" is activated, the listed Java routine is executed after every time
the system is loaded. The field can remain empty if no initialization
routine should be used.

• The ECU description data (CBF) and the ECU protocol data (GBF) are
displayed in the CAESAR portion of the window. These entries are
managed by the program and cannot be changed manually by the user.

Other entries under System:
• ECU

The individual ECUs that are diagnosed in the system are listed below this entry.
Functions of the context menus:

• New ECU: This function pulls up a selection window containing
various ECUs available on account of the used CAESAR data
files. Upon selection of a device, a new entry is made for that
ECU. This automatically generates the respective variants and
service entries with the help of the CBF data files contents. The
process of this action is documented in the status bar on the lower
end of the screen. Upon selection of a new ECU, a properties
window appears in which the following entries can be made:

o Description: An arbitrary, descriptive text.
o Driver type: Since the release of CAESAR 2.6, it is

possible to parameterize multiple GPD Refs for an ECU.
This setting selects the ones to be used by the diagnostic
server when the system is loaded, e.g., KLINE, CANLS,
etc.

o Connection number: The number of the CAESAR resource
which communicates with this ECU. While loading a
system during the run time of the diagnostics server, the
attempt will be made to open a channel to the ECU using a
resource with this number. If no resource with the given
access number is available, then the channel to the ECU
must be opened from the client application. Exception: If 0
is entered as the access number (= default setting), the first
available resource will be employed to open a channel.

o Device number: This field is only available in gateway
member ECUs. As the description implies, this is where the

Page 47

device number of the member is specified. For gateway
member ECUs, the device number of the gateway is
entered as the connection number.

o The option "Shut-down cycle for error deletion" is used
when clearing errors during a diagnostics session in Ecoute.
If the option is activated, the user is called upon to turn the
ignition off and on again after the error clearing process.
 By default, this option is activated.

o The option "Shut-down cycle for flashing" is used for
flashing during a diagnostics session in Ecoute. If the
option is activated, the user is called upon to turn the
ignition off and on again after flashing. By default, this
option is activated.

o The option "Shut-down cycle for coding" is used in
coding during a diagnostics session in Ecoute. If the option
is activated, the user is called upon to turn the ignition off
and on again after the coding process. By default, this
option is not activated.

o The field "Maximum number of areas to flash
simultaneously" controls how many flash areas in Ecoute a
user can change simultaneously and then flash. The default
value is 1.

o The field DDLID specifies the ID of the service to be
defined dynamically. This specification is only relevant if
the ECU protocol supports DDLIDs. The default value is
"none", i.e. the diagnostics server does not utilize any
DDLIDs for this ECU.

o ID of initialization services for this ECU. The services can
be assigned to a dialog window. This information is used
by the Vediamo Ecoute client when contact is established
with the respective ECU: When the option "conduct
initialization services automatically - upon contact" is
activated, the entered services are executed during each
renewed contact with the respective ECU. Java routines can
also be assigned as initialization services in the dialog
window.

o In the field “user defined qualifier” an individual qualifier
can be specified which is used to identify the ECU, e.g. in
Ecoute. The qualifier must be unique, and an in the
Diogenes data already existing ECU qualifier must not be
used.

Additional entries under ECUs:

• ECU:

Page 48

This entry represents a single ECU. The individual variants of this ECU are listed under
this entry.
Functions of the context menu:

• Delete: Deletes the respective ECU entry completely
from the system description.
• Properties: This accesses the same properties window
used for adding a new ECU.
• Duplicate ECU: This allows the respective ECU entry to
be duplicated, creating a second identical entry. The ECU
qualifiers are provided with running numbers (1-n) to
distinguish between identical entries.

Additional entries under ECU:
Variant:
This entry represents a single variant of the ECU. The variant entries are automatically
generated by the program based upon the content of the CBF files when a new ECU is
added. A variant is a filterable entry. The filter setting can be changed by clicking on the
entry's symbol. If a variant is excluded from the diagnosis, the filter setting should be set
to negative. The default filter setting when a new ECU is added is positive for all
variants.
Function of the context menu:

• Properties:

This action pulls up the properties window, with the
following settings for the variants:

• Description: An arbitrary, descriptive text.
• The identifier of initialization services for these ECU

variants. The services can be assigned to a dialog window.
This information is used by the Vediamo Ecoute client
when contact is established with the respective ECU and
the variants is specified: When the option "conduct
initialization services automatically - upon contact" is
activated, the specified services are carried out during each
renewed contact with the respective ECU, after any
services specified by the ECU entry are performed. If no
specific variant is identified, the basic variant entry is used.
Java routines can also be assigned as initialization services
in the dialog window.

• ID Block Information: This function provides a dialog in
which services for displaying additional ECU properties
can be assigned. These properties are displayed in Ecoute
when reading the ID block or in the flash dialog. The left

Page 49

side of the dialog lists the available diagnostic services that
can be used. Once a service is identified, it can be assigned
using the "Add" button. It is then added to the list in the
right half of the display window. The column "ID" in the
list on the right has to be edited by the user. This
description is displayed in Ecoute along with the result of
the assigned diagnostic service.

Additional entries under variant:
Filter entries for errors, services and variant codings:
These entries are filterable entries. By clicking on the entry symbol with the mouse, the
filter setting can be set or removed. When a service is excluded from the diagnosis, the
filter setting should be negative. The default filter setting for all services in a
new application is positive.
For each entry a window containing information can be opened by using the context
menu. The description provided by CAESAR is used by default.
An "actuation mode off" service can be specified or selected for all actuator services and
all generic services that can be used as actuators in Ecoute. Various DIOGENES
parameterized diagnostic services are admitted as "actuation mode off" services.
The actuators and the affected generic services are displayed by a switch symbol in order
to distinguish them from the other services in the system description. For services with
an entered "actuation mode off" service this symbol is yellow, for all others it is blue.
Additional information for all CAESAR/DIOGENES parameterized services, e.g., about
preparations/presentations, are displayed in a tree structure.
The following entries can be filtered, given that they are parameterized:

• Errors in environment data
Functions of the context menu:
Under the entry "error", preconditions for clearing errors
can be entered with the "delete preconditions for error
memory". After executing the function, services can be
assigned as preconditions in a dialog window. These
preconditions are performed by Ecoute before each
deletion of the error memory: Basically, the preconditions
entered in the basic variants are performed first. When a
specific variant is identified, the specific preconditions
specified for this variant are carried out subsequently to
the preconditions for the basic variant.

• Measurements
• Actuators
• Adjustments
• Functions
• Procedures
• Generic Services

Page 50

• Variant Coding
The filterable coding services are listed underneath this
entry. Each coding service contains additional subentries,
which list the associated coding fragments and their
possible values. Fragments parameterized by external data
files (ending: .ccf) are identified by the suffix (ex).
These subentries are for information only, they cannot be
filtered.

Functions of the context menu:
Here pre- and postconditions for the variant coding can be
specified in form of ECU services. One or more services
can be specified per condition, regardless of which
Vediamo class they belong to. Java routines can also be
specified. The services or Java routines that are assigned to
the preconditions will be performed once upon opening the
coding dialog in Ecoute. The services or Java routines that
are assigned to the postconditions will be performed once
upon closing the coding dialog in Ecoute.
If preconditions or postconditions were specified, two new
subfolders, "Preconditions" and "Postconditions" will
appear under the entry "Coding" in the tree control. In turn,
these subfolders contain the corresponding services. The
subfolders only appear when actual preconditions or
postconditions are collected.

• Standard objects
The variant-specific standard objects that can be performed
by this variant are listed under this entry. Standard objects
are assigned the following classes:

 Services folder:
Standard objects of class "Services" can be stored
here

 Flashing folder:
Standard objects of class "Flashing" can be stored
here

 Coding folder:
Standard objects of class "Coding" can be stored
here

User-defined standard object classes can be created using
the context menu of the "Standard objects" folder.
New Standard object class: Additional user-defined
standard object classes can be created here. A new folder is

Page 51

created under "Standard objects" for each user-defined
standard object.
The folders "Services", "Flashing", "Coding" as well as
user-defined standard object classes possess a context menu
with the following properties:

 New standard object:
This function accesses a window in which the name
of the new standard object must be entered. As an
alternative, the possibility exists to select from a list
of current names. A new entry with this name is
now created. Subsequently, a properties window is
displayed in which the following entries can be
made:
Description: An arbitrary, descriptive text.
Service: The service hidden behind the standard
object must be specified here. These can be Java
routines, procedures or functions. It can also specify
general services, provided that default preparations
are parameterized for them. The service can be
entered manually, however it is possible to select
from the eligible services.

 Delete: This deletes a standard object.
 Properties: A description of the standard object

class can be entered here.
 For standard objects and -classes, in their respective

context menu a Copy+Paste functionality is available for
duplicating.

The context menu entries for ecus, variants and their filter entries for different services
have together two functions “import” and “export” in their context menus. Thereby
available functionality has the following characteristics:
- individual selection of the services to be exported /imported in a selection window
- Multiple selection in the Tree View within the ECU, variant and function level
- Export into a table-oriented text file

Export function:
After selection of the export function in the context menu a selection window opens, in
which the services to be exported can be selected depending upon their filter information.
After selection of the services a file save dialogue is called, in which the name of the file
must be specified. Furthermore the ending of the file name must be indicated. The
suggested default ending of the file name orients itself to the level of the selection in the
Tree View:
- ECU level with ending .vds
- Variant level with ending .vdv (Vediamo data variant)

Page 52

- Function level with ending .vdf (Vediamo data function)
Then a text file with one line for every service entry which can be exported is created. A
line consists of several columns with the following column headings:
- ECU
- Variant
- Function
- Qualifier
- Description
- Filters
Columns are separated by tabulators, thus reading and probably processing of the files
e.g. with a spread-sheet program is possible.

Import function:
Over the function “import" in the context menu ECU, variant and function descriptions
of the described text format with the three file endings
- .vds
- .vdv (Vediamo data variant)
- .vdf (Vediamo data function)
Can be imported into a system description. After import file selection the dialogue
“import” is displayed. Here the user has the possibility of selecting the kind of the
services to be imported, depending upon filter information ("all", "positively filtered",
"negatively filtered", "new/not filtered"). In addition the following functions can be
implemented:

1) Creation of an activity log without following import:
With click on the "activity log"- Button, a change examination over the entire system is
accomplished . The changes resulting on the import are listed in a text window.
Additionally, the user has the possibility to store the text window's contents for logging in
a file. The file is stored by default under ...\ DATA \ VediamoData \ [current system
name] \ yyyy-mm-tt_hh-mm_Import_ [current system name] .log.

2) Actual import of the selected services:
After Selection of the "import" Button the data is actually imported and/or written into
the existing vsb.

• Routines:

The system specific Java routines that can be performed with this system are listed under
this entry.

Functions of the context menu:

• New routine

Page 53

This function calls up a data selection window in which a Java routine program may be
selected. A new entry is created when a Java routine is selected. Upon selection of a
new Java routine, a window is displayed in which the properties of the routine can be
specified. This window is also available for the initialization routines of systems, ECUs
and ECU variants. The following entries can be made:

• Description: An arbitrary, descriptive text.
• Command Line: Command line parameters to be passed to the Java

routine when execut ed.
• Origin path: The complete origin path of the Java routine is

displayed here. A button can be used to display a data exchange
dialog for changing this path. This entry is for information only.
 The registered path does not necessarily have to agree with the
conditions of the Vediamo diagnostics server at runtime.

• Execute a Java routine synchronously in Ecoute: This controls
whether a Java routine from the Ecoute application should be
performed in the foreground (synchronous) or in the background.
The setting also affects standard objects, in which the respective
Java routine is entered. By default, in Ecoute initialization routines
are carried out synchronously and all other Java routines are
carried out asynchronously.

Each Java routine has an entry under "routines". The context menu of
such an entry contains the following entries:

• Delete: This deletes the Java routine from the system.
• Properties: A descriptive text for the Java routine can be entered here.

• Standard objects
The system specific standard objects that can be carried out by this system are
listed under this entry.

o Standard objects are assigned the following classifications:
 Services folder:

Standard objects of class "Services" can be stored here

 Flashing folder:
Standard objects of class "Flashing" can be stored here

 Coding folder:
Standard objects of class "Coding" can be stored here

 User-defined standard object classes can be created using the
context menu of the "Standard objects" folder.
New Standard object class: Additional user-defined standard
object classes can be created here. A new folder is created under
"Standard objects" for each user-defined standard object.

Page 54

 The folders "Services", "Flashing", "Coding" as well as user-
defined standard object classes possess a context menu with the
following properties:

 New standard object:
This function accesses a window in which the name of the new
standard object must be entered. As an alternative, the possibility
exists to select from a list of current names. A new entry with this
name is now created. Subsequently, a properties window is
displayed in which the following entries can be made:

 Description: An arbitrary, descriptive text.
 Service: The service hidden behind the standard object

must be specified here. These can be Java routines,
procedures or functions. It can also specify general
services, provided that default preparations are
parameterized for them. The service can be entered
manually, however it is possible to select from the eligible
services.

 Delete: This deletes a standard object.
 Properties: A description of the standard object class can be

entered here.
 For standard objects and -classes, in their respective

context menu a Copy+Paste functionality is available for
duplicating.

o All entries can be edited in the left as well as in the right half of the screen.

2.3.4 Working with the System Configuration

• Creation of a new system description;
• Editing an existing system description;
• Updating the contents of a system description;
• Consistency check of the system description contents;

2.3.4.1 Creation of a New System Description

First a new, empty system description is generated using the menu function New or the
 symbol in the symbol bar. Then the properties of this new system are specified:

Place the cursor on the entry "New system" in the left half of the screen, and right click to
call up its menu. The function Properties will cause a window to be displayed in which
the name, description and, if applicable, the Java initialization routine can be entered.
Subsequently, the ECUs to be diagnosed in this system can be specified. Select the
function New ECU within the entry ECU of the context menu. After the selection of an
ECU, the program will generate the associated variant and service entries. Afterwards,
the properties of the new ECU are specified. By default, the filter settings of all the
variants and services of a new ECU entry are set. The filter information can be modified

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Erstellen_SysDef�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Bearbeiten_SysDef�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Aktualisieren_SysDef�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_Workingwitht_nbspChecking�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Neu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_System_Eigenschaften�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_ECUs_NeueECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_ECUs�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_ECU_Eigenschaften�

Page 55

by clicking on the symbol to the left of the entry. The menu functions Select all, Delete
all selections, Reverse selections, Automatic erroneous data modification and the
symbol in the symbol bar are extremely helpful tools for this. Java routines and standard
objects can also be entered, if necessary.

Upon completion, the system description is saved through the menu function or by using
the symbol on the symbol bar.

2.3.4.2 Working a Preexisting System Description
First, a system description file is opened using the menu function Open or the symbol
on the symbol bar, or by clicking on the names of the last open files in the menu. This file
can subsequently be worked on as described above.

After the changes are completed, the system description is saved with the menu functions
Save or Save as or through the symbol on the symbol bar.

2.3.4.3 Updating the Content of a System Description

A checksum is stored in a systems description file for every CAESAR CBF- , GBF-data
file used and every Java routine referenced. During a diagnostics session, with the help of
the checksum, the Vediamo diagnostics server can proofread whether the applied data
matches that of the current configuration, and excludes a system description if necessary.
If referenced data has been changed, the system description must be updated. This is
done as follows: Open the file, execute the menu function Refresh, and then Save the
file.

2.3.4.4 Checking the Content Consistency of a System Description

It is possible for a system description to become inconsistent if services are removed
through changes in the parameterization, or if their IDs are modified. For example, it
might refer to services that no longer exist. It is possible to check the consistency. This
is done as follows: Open the file and execute the menu function Verify consistency.
 Errors found during this consistency audit are documented in the log file and in the log
window. The filter setting is removed on no longer existing variants and services, and an
exclamation mark is used to denote the affected entries. Instances where standard objects
are found that reference no longer existent services are also logged. The individual
problems can be viewed and corrected based on the record in the log window. The system
description file should be saved again afterwards.

2.3.4.5 Search Function

The configuration tool provides a search function with which one can locate names or
parts of names in the respective windows. The text search is initiated through the menu
entry Search, that is found in the menu Edit, as is depicted in the following
example Ecoute-Client. The Search function can also be executed using the key
shortcut Ctrl+F.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AllePositivFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AlleNegativFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_AlleNegativFiltern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_FilterUmkehren�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_UDatenAendern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Speichern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_EditMenu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_MRU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Speichern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_SpeichernUnter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_EditMenu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_MenuView�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Datei_Speichern�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig_TheFunctions_EditMenu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Menue_KonsistenzCheck�

Page 56

After selection of the function "Search", the desired text can be entered in a dialog box:

This dialog box remains permanently open (non-modal dialog) until it is closed with
"Cancel". After entering the sought after text and activating the "Continue Search", the
search is initiated or continued.

The system tree control is searched in the configuration tool. The search in a window
always occurs from top to bottom. Capitalization in the search text is ignored. When a
window has been searched to the end, the search is continued from the top of the window.
 If the search item is not found, an info box appears with a corresponding notification. If
the search item is found, the corresponding line of the window is activated. The search
can then be continued with the button "Continue Search" in the "Search" dialog.

It is possible to limit the text search to entries with a specific status with the assistance of
five options lined up under "Search entries". The entries in question are divided into five
groups:

• Positive filtered
• Negative filtered
• Erroneous
• New/unfiltered
• Others: all entries that do not have a filter status, e.g. ECUs, standard object

classifications, Java routines, etc.
• In order to search all entries, all options must be marked. This is the default

function when initiating the Search function.

Page 57

The register in the upper part of the dialog box: can be used to switch to the Search and
Filter function.

When the options button Search by prefix and filter is active, the specific prefix is
searched for, and the found entry/entries is/are appropriately filtered.

If the buttons All new / unfiltered elements or Filter all elements are active, then the
options specially required for the Search for prefix and filter are deactivated. By
activating Filter settings, when the All new / unfiltered elements is activated, all new or
unfiltered elements in the file are filtered in accordance with the filter setting.

The two radio buttons on the lower left select whether the found entries should be filtered
positive or negative.

The button Set filter activates the desired filter setting of the current services, and
subsequently continues the search automatically.

With the button Set all filters, the whole system description is scanned for services
containing the specified prefix in the qualifier. Should any be found, the desired filter
setting is automatically set.

The search algorithms in the Search and in the Search and filter differ:

• Search checks whether a service qualifier arbitrarily contains the particular string.
• If, e.g., the term DNU is given as a search string, then the

services "Test_DNU_1" und "DNU_ABC" would be found..

Page 58

• With Search and filter, the prefix of a service qualifier alone is definitive.
• If, for example, the term DNU is given as a search text, then the service

"Test_DNU_1 would be ignored, and the service "DNU_ABC would be
appropriately filtered.

2.3.4.6 Batch Mode

The system configuration can be operated in batch mode in order to automate the
updating and checking of system description files. In doing so, the program performance
can be guided by command line parameters.

The following command line parameters are possible (optional arguments in corner
brackets []) :

Filename:
Name of the subject .vsb file. The file will be initially searched for in the actual working
directory, and if not located there, then in the directory that is entered in the file
Vediamo.ini under "[SERVER] SystemPfad". This parameter specification is
mandatory. [-a]

Refreshing:
When this parameter is given, all checksums in the system description referenced CBF,
GBF and Java routine files are re-calcualted and re-entered. If an error occurs, an error
message is entered in the log file.
Without this parameter, no update takes place.

[-k]
Check consistency:
When this parameter is given, every variant and service is checked for inclusion in the
DIOGENES file and classification in the VEDIAMO service classes. If an error occurs,
the entry concerned is marked as erroneous and is not included when the file is saved.
Without this parameter, there is no consistency check.

Treatment of new variants and services:
[-n+]
New variants and services in the DIOGENES parameterization are added to the system
description and filtered positive, i.e., they are available to the client during the server run.
[-n-]
New variants and services in the DIOGENES parameterization are added to the system
description and filtered negative, therefore they are unavailable to the client during the
server run.

If neither parameter n+ nor parameter n- is specified, then new variants or services are
ignored.

Page 59

If both parameters are specified simultaneously, an error message is entered in the log file
and the program is aborted.

[-t]
Testing:
When this parameter is specified, the system description is not saved after being edited
and only the log file is created.

[-l Log filename [+]]
Name of the log file, in which the results and error messages are to be recorded. If the
parameter "+" is given, then, existing files are not overwritten, but rather all new log
information is appended to these files.

If the log filename is not given the log information is treated as in interactive operations
and written in the VediamoSysConfLog.txt file.

[-s+ Prefix]
Definition: Filter all new services with the given prefix positive.

[-s- Prefix]
Definition: Filter all new services with the given prefix negative.
This filtering affects only newly added services, previously available ones with the same
prefix remain unchanged.

The -s command line parameters can be specified multiple times in order to filter various
prefixes, e.g.

Example:
-s- DNU -s- WVC

The -s parameters are treated with a higher priority than the others. If, for
example -n+ (= new services filter positive) and -s- DNU was given, then a new
service DNU_xxx will be filtered negative, although according to -n+ it
should be filtered positive.

No user interaction is possible or necessary during batch operations. Dialog boxes, that
indicate errors in interactive operations, are suppressed (sole exception: When serious
errors in connection with the log files occur). Errors are documented in the log file
instead.

The program is ended when the editing of a system description is completed. In doing so,
a return code is generated for the calling process. The following return codes are
possible:

Page 60

0 = Procedure concluded without errors.
1 = Serious errors occurred, e.g.,

• Specified system description data cannot be read.
• Specified system description data cannot be written.
• Unknown/missing/erroneous command line parameters.
• Other errors, e.g. errors during the initialization of CAESAR, parameterization for

ECU not found, etc.
Details can be derived from the log files.

• Errors during the opening/ creating/ writing of the log file.

2.3.4.7 Setting of Options Beyond Command Line Parameters

At the start of the system configuration, any keys for the Vediamo.ini file can be
specified in the command line. The specified keys are valid for the duration of the
program session.

The command line syntax reads as follows:

System Configuration.exe /VI "[Section] key value ... [Section] key
value ..."

The options /VI or -VI serve to distinguish between Vediamo.ini keys and other (batch
mode) parameters. The list of keys to be overwritten must be contained in quotation
marks.

Directories with cbf files

When the configuration tool starts, analog to the diagnostics server, those .cbf files that
are entered in the directory found in the Vediamo.ini file listed under "[CAESAR]
CBFPFAD" are applied first.

If a system description file should be opened that is not included in the current system
directory, then a check is made to determine whether .cbf files have been stored in this
directory. If yes, then as with the diagnostics server, the current .cbf files are unloaded,
and the .cbf files in the new directory are loaded.

The menu entryEdit / Return to the standard system path resets the .cbf path to the
default value, e.g., to create a new system description.

2.3.5 Special Features
2.3.5.1 Service Filters

Services can be filtered in various ways. The filtering of services occurs through settings
in Vediamo.ini.
[Ecoute]Global Filter

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�

Page 61

Services, which qualifier begins with these prefixes are filtered negative
(providing that they have not already been filtered out by
[CAESAR]UseServiceTypes.
The negative filtering can be cancelled by selecting the appropriate commands in
the menu.

[CAESAR]UseServiceTypes
If this entry carries the value "STANDARD", then services such as

• DST_SYSTEM
• DST_ENVIRONMENT_DATA
• DST_GLOBAL, DST_NEGRESP
• DST_BINARY_ACTUATOR_INP
• DST_BINARY_ADJUSTMENT_INP

will not be accepted in the VSB. They are treated as if they did not exist.

2.3.6 Configuration (INI Parameters)
The system configuration possesses only 4 parameters in the INI file, all of which deal
with the storage of logs. Details can be found in the INI editor.

2.4 Ecoute

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 62

2.4.1 Introduction

The Ecoute application provides the user with all available functions of the diagnostic
server through a comprehensive interactive interface. There are specialized windows for
every task that can be configured, adapted and arranged as desired. Customized solutions
for special, non-standard tasks can be implemented using Java programs and integrated in
the program.

On account of its scope of functions, Ecoute serves for taking ECU systems into
operation in the engine test facility as well as for testing ECUs in a laboratory setup or for
vehicle diagnostics (e.g. quick test).

A short description of the interface can be found in the chapter Interface Structure.
The files which Ecoute requires are summarized in the chapter The Ecoute Files.
A subsequent detailed description of the functions and actions is included in The Ecoute
Functions.

Finally, the Ecoute menus as well as the keyboard commands are described.

The Ecoute user interface supports different languages. The language is specified by the
Language entry in the [COMMON] section of the Vediamo.ini configuration file. The
languages German (DE) and English (EN) are supported in Version 3.1.

Requirements for Ecoute Operation

In order to use Ecoute to establish communication with ECUs, the following
requirements have to be met:

• Correct installation of Vediamo as well as the CAESAR hardware drivers.
• The installed and registered server must have the same version as the Ecoute used.

This is automatically the case after correct execution of the installation program.
• The CAESAR parameterization required for the ECU.
• Correct physical connection between tester (diagnostic server with CAESAR

hardware) and ECU.
• CAESAR hardware power supply (CAESAR Part D and Part P - eCOM in

particular must be supplied with external power)
• ECU power supply. Some ECUs require power on the ignition line in addition to

the operating power.
• Availability of a Vediamo system description which includes the ECUs you like

to diagnose. Use the Vediamo system configuration to generate a system
description. If no system description has been generated yet, you can also perform
diagnostics on an ECU with the Vediamo system description (VSB). For every
ECU included in the CAESAR CBF file, Ecoute provides a system of the same
name for diagnostics.

• A license for at least one of the implemented CAESAR hardware components.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_GUIStructure�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFil�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteMen�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_KeyboardOper�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_Installation�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Caesar�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�

Page 63

2.4.2 GUI Structure

Ecoute User Interface

 An overview of the most important Ecoute windows is provided by the following table:

Ecoute Windows

Selection Window

• Display of selected ECU system
• Display of ECU names / names of ECU

variants
• Display of ECU connection to CAESAR

hardware
• Display of standard objects (selected services

with special functions such as unlocking, ECU

Page 64

reset, etc.)

Output Window

• Display of status messages
• Display of results from functions / Java

routines, etc.

Status Line

• Explanation of the currently selected menu
entry

• Buttons for displaying and changing the ECU
contact status

• Display of log files

Measurement Window
(Service group)

• Display and examination of measurements
with the following functions:

o Textual (table) and analog (bar
diagram) value display

o Time dependance (curve diagram)
o Recording of series of measurements
o Analyzing recorded series of

measurements

Controller Group (*)

• Display and operation of controllers /
adjustment

o Name of ECU to which the controller
/ adjustment applies

o Name
o Actual value
o Units of controller
o Difference controller / adjustment.

An adjustment is designated by (*)
o Control units for changing the status of

the controller / adjustment

Error Window (*)

• Display of ECU errors with the following
information:

o Error code (e.g. B1470)
o Error text
o Information whether error is current or

not
o Information whether error is stored or

not
o Information whether MILis turned on

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#MIL�

Page 65

o Display of error environment data with
following information:

o Name of error environment value
o Description (e.g., Geberbruch)
o Units of error environment value

Variant Coding (*)

• Display and selection of name of service for
variant coding

• Display and selection of coding fragments
• Display and selection of coding fragment

values
• Coding string (hexadecimal and decimal)

Flash Window (*)

• Display and selection of flashware (area,
meaning, FlashKey)

• Start of ECU flash process

Trace Window (*)
• Display of communication data between PC

and ECU (as bytes or as blocks)

 (*) Not included in figure

The System or Selection Window

The system or selection window has a special function. It displays all ECU and their
diagnostic services in an hierarchical tree structure, as well as possible standard objects
and Java routines. Each element can be activated by a double click (or <Enter>) (ECU:
contact is established or terminated, services and Java routines: execution is started).

For each object in the tree structure which has an explanation, this explanation can be
displayed in a properties window (right mouse key - context menu - properties).

For ECUs, this takes place in the properties window. For services and Java routines, this
is a simple window with the most relevant information on the service / Java routine.

Sorting the Services

The diagnostic services of the ECU are broken down into several groups. Traditionally,
you find the following groups of services:

• Measurement - services which serve to read a value from the ECU

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#EcouteRessourcenmanagement�

Page 66

• Adjustments - allow fixed settings for certain ECU parameters
• Controller - similar to adjustments, however the set values are not stored

permanently in the ECU.
• Functions - carry out an action in the ECU and deliver a result
• Procedures - like functions, but deliver no result
• General services - all other services.

Alternatively the services can be categorized in groups corresponding to the DIOGENES
service types. The way of classifying services is determined by the system description
file. This might be especially useful whe using newer ECU data, which becomes
increasingly complex.

Important:

The parameters set by adjustment services are permanently changed in the ECU.
The values will not be reset to defaults by switching off the ignition.

Filters for Services

Services can be filtered in different ways (i.e., masked in the system window display).
Filtering of services is done by settings in the Vediamo.ini and/or in the system
configuration:

• [Ecoute]UseFilters
• [Ecoute]GlobalFilter
• [CAESAR]UseServiceTypes

The different configuration possibilities and the expected results are explained in the
following:

[CAESAR]
UseServiceT

ypes

[ECOUTE
]

UseFilt
ers

VSB/DIOGEN
ES System

Expected Result

(don't care) 0 VSB System

All services contained in the VSB are
displayed unfiltered, regardless of the filter
characteristics (as set in the system
configuration) of the service.

(don't care) 1 VSB System Only those services contained in the VSB
and positively filtered there are displayed

ALL 0 DIOGENES Sy
stem

All services contained in the DIOGENES
system (CBF) are displayed.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�

Page 67

STANDARD 0 DIOGENES Sy
stem

The service types:

• DST_SYSTEM
• DST_ENVIRONMENT_DATA
• DST_GLOBAL, DST_NEGRESP
• DST_BINARY_ACTUATOR_INP
• DST_BINARY_ADJUSTMENT_INP

are not displayed.

ALL 1 DIOGENES Sy
stem

Services whose qualifiers begin with the
prefixes included
under[ECOUTE]GlobalFilter are not
displayed.

STANDARD 1 DIOGENES Sy
stem

The following services are not displayed:

• Service types:
o DST_SYSTEM
o DST_ENVIRONMENT_DATA
o DST_GLOBAL, DST_NEGRESP
o DST_BINARY_ACTUATOR_INP
o DST_BINARY_ADJUSTMENT_IN

P
• Services whose qualifiers begin with

the prefixes included
under[ECOUTE]GlobalFilter

Despite the general relevance, working without a selection window can make sense. If
you generally use only pre-prepared measurement and controller windows, you can close
the selection window (menu Window / System Window or CTRL-S). This state is stored
in the configuration (Vediamo.ini). The next time Ecoute is started, the window remains
closed. It can be opened again any time using the same menu or keyboard command.

The Status or Output Window

This window serves to output the results of all executed actions such as system selection,
execution of services, etc. This window can be kept closed as well in order to allow more
room for other windows.

Other Windows

The remaining windows are described in the respective subsequent sections.

Page 68

2.4.3 The Ecoute Files
The DiagServer is responsible for the administration of diagnostic data and system data.
There are additional files, however, which are useful especially for Ecoute. These are:

Name Suffix Explanation

Session VSC

The state of Ecoute is stored in this file and can be restored
during the subsequent start-up. It contains the size and
position of the main window as well as of other windows
(MWG, STG, Errors, etc.), the selected system and the
contact status to ECUs.

Service Group VSG

Groups of measurements (in XML format) to be displayed in
a measurement window, can be defined for each system. The
file contains the position and size of the window and its
diagrams along with the services selection and
parametrization (min/max, color a.o.)

Measurement
Recording

VSR and
BIN

The measurements in a measurement window can be
recorded and saved in two files with the same name: the
VSR file contains information about the service group, the
BIN file contains the numeric values of the series. The files
must not be edited by the user.

Manual
Command
Input

VND Message and communication parameters are stored here for
communicating via CAESAR API-I.

Snapshot TXT
HTM(L)

These files are only written by Ecoute. They contain the
contents of data windows which can be stored if desired and
used for documentation purposes. Either as pure text or as
HTML.

Log Files LOG Different log files can be written as needed.

2.4.4 The Ecoute Functions
The most important functions of the Ecoute client are described in this section.
Select and Close System
Contact ECU
Execute Service
Readout Error
Quick Test
Examine Measurements and set Controllers/Adjustments
Variant Coding
Flashing
OBD2
Configure Ecoute and Server Options
Macros

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SelectSystem�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ContactECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ExecuteServi�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ReadError�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SystemQuickT�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayMeasu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_VariantCodin�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Flashing�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_OBD2�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ConfigureEco�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Macros�

Page 69

Java routines
Routine Generator
Standard Objects
Display Trace and Monitoring Data
Manual Command Input
CAN Bus Simulation
Snapshot File Storage
Simulation of ECU Communication

All functions can be accessed via the corresponding menu items. Some often used
functions can also be accessed using the corresponding buttons on the toolbar. The
toolbar can optionally be shown or hidden.

2.4.4.1 Select System

You select the system to be diagnosed either from the menu System / Select... or using
Alt-A. The dialog "Select system" appears and lists the available ECU systems.
The system selection list control indicates for each entry whether it is VSB or CBF based.
The related information is displayed in a second column of the list (CBF or VSB). Two
buttons allow you to specify whether only the systems based on one system description
file, or only the systems based on the DIOGENES parameterization, or both types of
systems should be displayed in the selection list. The button Change Directory allows
you to change the directory in which the diagnostic server looks for the system
descriptions and the corresponding DIOGENES data. A new folder can be selected in the
dialog which appears after the button is pressed. The diagnostic server subsequently
updates the affected DIOGENES data. The progress of this action is shown in the status
window. Next, the system selection window is updated. Select the system to be diagnosed
and confirm with OK. A message appears in the status window stating that a new system
has been selected. The selected system appears in the selection window as a tree
structure.

With the menu option "set standard system path" the default value of the current system
description and -.cbf path can be set, e.g. after a change of the system folder.

Alternatively to the manual selection of a system using the system selection dialog, the
name of the system to be loaded can be entered as a command line parameter when
Ecoute is started. This system is then loaded immediately after the server has been
initialized. It is possible, e.g., to generate entries for frequently analyzed systems in
the StartProfile.txt file so that the StartCenter starts Ecoute with the names of these
systems as parameters.

Using the button "Auto system selection", an ini-file containing predefinded ECUs can be
selected. The application then tries to establish contact to every ECU defined in the
selected file. If an ECU with a valid diagnostic variant could be detected, and a system

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_JavaRoutines�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_RoutineGener�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_StandardObje�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayTrace�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ManualComman�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_CANBusSimula�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SnapshotFile�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Simulationof�

Page 70

description containing such an ECU is available, this system description will then be
highlighted in the system selection list box.

Warning:
Opening and closing a system affects DiagServer. If other clients are active at the time,
the system changes affect them as well.

2.4.4.2 Close System

A system can be closed using the menu selection System / Close. All windows displaying
ECU-relevant data (system, error, measurement, trace) are then closed.

The system is automatically closed if:

• Ecoute is ended and no further clients are using the server
• A new system is selected
• The DiagServer is re-initialized (server reset)

2.4.4.3 Contact ECU

In order to establish contact, a resource (connection) must first be assigned to the
diagnostic hardware.
Ecoute provides a combined ECU selection / properties dialog which allows, among
other things, the assignment of connections on the CAESAR hardware to ECUs.

ECU Properties Window

This dialog can be called up either by making the menu selection ECU / Properties, or by
clicking on an ECU in the selection window with the right mouse key and then select the
context menu entry Properties.

Page 71

On the left, the dialog contains a list of all available ECUs currently loaded in the system.
On the right, among other things, a selection list for the connection is displayed. It shows
the currently assigned connection for the ECU selected in the ECU list. In the example
above, the ECU "SIM266" is assigned to the connection CANHS No. 1 on CAESAR Part
Y. The drop-down list contains all currently available contacts (which are not assigned to
any other ECU) and the entry <none>. If <none> is selected, the currently assigned
connection is released so that it can be assigned to other ECUs.

For example, if the current selected system contains the two ECUs ECU1 and ECU2, and
ECU1 is on K-line 4 and ECU2 is on K-line 5, but the two should be switched, proceed
as follows:

• Select ECU1 and connection <none> in order to release connection K-line 4.
• Select ECU2. The previously released K-line 4 shows up in the connections list.
• Select K-line 4 for ECU2. This releases the previously taken K-line 5.
• Select ECU1 and assign K-line 5.

The changes take effect immediately after every step, not when exiting the dialog with
OK. It is possible that a change may need a few seconds to take effect.

Using the Multiplexers

The CAESAR hardware makes more connections available than there are communication
channels. The channels can be switched between different connections using the
multiplexer (Part C or E). The following scenario is possible: The computer contains
CAESAR Part A. One Part B2 and Part E are connected to it. This hardware
configuration makes two channels available. To connect two ECUs (ECU1 and ECU2) to
K-line 1 and K-line 2, proceed as follows:

• Go to the drop-down connection list. There can be, for example, 7 possible K-
lines which could be assigned to the two channels.

• Assign ECU1 to K-line 1, for example.
• K-Line 1 no longer appears in the drop-down list. 6 possible K-lines are shown.
• Assign ECU2 to K-line 9, for example.

If ECU1 K-line 1 should now be switched to K-line 7, proceed as follows::

• Go to the drop-down connection list for ECU1. Since both available channels
are now already being used, the remaining 5 K-lines do not appear in the
list! Select connection <none> for ECU1. This releases a channel.

• Go to the drop-down connection list for ECU1. Now six possible K-lines are
listed again.

• Select K-line 7 for ECU1.

Page 72

When all channels are taken, therefore, and one wishes to multiplex a channel onto
another pin, it is first necessary to release the channel. (<none> connection). A new pin
can subsequently be assigned.

Gateway Member ECUs

For gateway-member ECUs, "GW member x on ECUy" is displayed. x represents the
device number and ECUy the name of the gateway ECU.

"Description" Tab

The parameterized description of the basic variant and the current variant of the selected
ECU are displayed under this tab in the ECU Properties dialog. The part number as well,
if it is parameterized.

"MVCI" Tab

The version of the CBF file belonging to the selected ECU is displayed under this tab in
the ECU Properties dialog.

Wenn Kontakt zu einem Steuergerät ohne aktuell zugewiesene Ressource
(Kommunikationskanal) aufgenommen werden soll, dann wird folgender Dialog
angezeigt:

Page 73

Establish Communication with the ECU

The contact to an ECU can be established or terminated with the following commands:

• Function key F3 (establish) and F4 (terminate)
• Menu ECU / Contact...
• Clicking the ECU button in the status line
• Selection window: Double click on the ECU symbol or with right mouse key and

context menu

Please observe the ECU symbol in the selection window and on the button in the status

line: It should look like this before communication is established: . As soon as

communication is established, the connector is connected: .

If an ECU variant could be recognized, the variant name is displayed following the name
of the ECU in the selection window once communication is established. If no variant
could be recognized, you have the possibility of automatically checking whether the
variant is parameterized for another ECU.

You can also establish communication with an ECU using the manual command input.

If contact should be established to an ECU without currently assigned resources
(communication channel), the following dialog is displayed:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ManualComman�

Page 74

The current available resources for establishing contact with the ECU are displayed in the
list on the left. The default resource from the VSB is, if included in the list, already
marked. If all the possible resources for the ECU are already assigned, the list is empty.
In the list on the right, the possible resources - including the ECUs using the resources -
are displayed. The default resource from the VSB is, if included in the list, already
marked here as well.

The user can now (if no free resource is available) select an ECU from the list on the
right from which he wishes to release a resource. If a resource is released, the current
status of the available resources is immediately updated in the first list.

To establish contact, the user selects one of the available resources from the list on the
left and subsequently presses the Establish contact button.

Read ID Block

Select the menu entry Read ID Block in the ECU menu to read the ECU ID block (see
also keyboard operation).

The following is displayed in a separate window:

• MB number
• Hardware version
• Software version
• Supplier
• Diagnostic version

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_KeyboardOper�

Page 75

• ECU ID
• (Diagnostic) state, e.g., "Series production"
• Production date

In addition, defined additional information is displayed in the corresponding system
description. The information is fixed in the system configuration as follows:
For every ECU variant, any services which provide the user with additional information
on the ECU can be collected and assigned in its properties dialog (system configuration,
function ID block Information). In order to display this information, Ecoute requests the
ID of the services entered in the system configuration from the ECU and then executes
them.

The service ID (e.g. "Software-Stand", "Code", "Boot-Block", etc.) is then shown in the
left column in the Ecoute ID block window. The result of the corresponding diagnostic
service is shown in the right column.

The content of the ID block window can be stored in a snapshot file using the button
Store.

The window can be closed with ESC or the Close button.

2.4.4.4 Execute Service

Ecoute provides the possibility to directly execute services interactive from the selection
window. The service simply has to be selected in the system tree structure (selection
window) and started by double click or pressing the RETURN key.
The result is displayed in the status window (output window).

If the selected service has input parameters ("Preparations" in DIOGENES terminology),
a dialog is displayed before execution which prompts the user to input one value per
parameter.

Page 76

Important:

The execution of services might permanently change ECU parameters.
The permanently changing services are adjustments, variant coding, flashing and
some others.

As any diagnose service, also a Java routine can be executed by double clicking it in the
system window. By using the context menu (right click), item Execute with command
line params, the Java program can be started with any parameters in the command line.
In the system description default params can be set for every Java routine.

2.4.4.5 Read Error

After communication with the ECU has been established, its errors can be read. ECU
errors can be read once or cyclically.
If a measurement group with the filename Fehler_Mit_Protokoll.mwg exists in the
system directory, this measurement group is opened automatically when the error
window is opened and is linked to the error window (the actions Read, Read cyclic, Save
and Close apply to both windows).

• Select Error / Read errors (F6 key) from the menu. If the system has multiple
ECUs, a dialog appears requesting to select the ECU of which the errors should
be read.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ContactECU�

Page 77

• An error window appears after the ECU has been selected. The window is labeled
with "Errors" and the name of the ECU as well as the name of the ECU variant
(or <Basic variant> if no variant could be recognized).

• After the window has been opened, the errors are read from the ECU. This
process can take time if there is extensive error data. The errors are then displayed
with code, text, current information, stored information and MIL (malfunction
indicator light).

The two-part error window opens when Read errors is called:

Buttons and selection options are displayed in the upper section of the error window. The
errors and error code ("Code"), error text ("Text") and the appropriate flag "Current",
"Stored", or "MIL On" are displayed below the buttons and selection options. If one of
the error flags is set for a certain entry, it is denoted by an asterisk ("*") in the respective
error flag column.

The error environment data with the

• name of the environment value ("Name"),
• description ("Description"),
• and unit ("Unit")

are displayed in the lower window section. The error environment data for the error
selected in the upper window section is displayed.

Logging Additional Information - Linked Measurement Group

You have the possibility to establish a group of measurements which are automatically
displayed with errors and logged, if necessary. This is especially practical for test drives

Page 78

during which the test driver can determine all important information by pressing a single
key, rather than open several windows and click through them.

Generate a regular old-style measurement group and store it in a file named
Fehler_Mit_Protokoll.mwg. As soon as a file is available for the selected system, it is
automatically read during error reading, as well as stored when storing a snapshot. The
measurement group is not displayed on the screen in the process.

A short description of the error window buttons and selection options:

"Clear" Button:

This button can be used to delete ECU errors. If necessary (entry shut down cycle
required in the VSB), the user is prompted to turn the ignition of and on again after the
shut down cycle.

The content of the error window is subsequently refreshed on demand (dialog box with
query).

"Read" Button:

The ECU errors can be read once and displayed in the error window with this button. It is
a pushbutton that does not lock when pressed. Alternatively, the ECU errors can be read
once by pressing the "F6" key.

"Read cyclic" Button:

The button Read cyclic has two states. In the <pressed> state (button is displayed
recessed), errors are read from the ECU cyclically.

On opening the error window, the button is in the state <not pressed> (button is displayed
elevated). This means the errors are not read cyclically.

"Save to file" Button:

The Save to file button saves the current error information in a file. If a linked
measurement window is open, its content is saved as well.

"Save cyclic" Button:

The Save cyclic button saves the ECU errors cyclically in a file. The button can only be
activated when the errors are being read cyclically.

Besides the buttons, the options Current, Stored and MIL On can be selected in the upper
section of the error window:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SnapshotFile�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SnapshotFile�

Page 79

"Current" Option:

This determines whether or not errors with the "Current" flag are displayed.

"Stored" Option:

This determines whether or not errors with the "Stored" flag are displayed.

"MIL On" Option:

This determines whether or not errors with the "MIL On" flag are displayed.

"All" Option:

This option determines that all errors from the ECU are displayed, independent of the
error flags "Current", "Stored", and "MIL On". The default setting is for the option "All"
to be selected, so that all errors can be displayed.

"Envir. Data" Option:

When Envir. Data is activated, errors are displayed with environment data. If the option
is deactivated, no environment data is displayed. The lower section of the window in the
example is then not displayed. When the option Envir. Data is deactivated, errors without
environment data are read from the ECU for communication protocols (e.g., KW2000)
which allow errors without environment data to be read.

"Filtered" Option:

It is possible to filter out errors or error environment data in the Vediamo system
configuration, i.e., filtered out errors or error environment data are not displayed in the
Ecoute application. The option Filtered allows the user to determine whether the filter
mechanism for displaying errors and environment data in Ecoute should be applied or
not.

"Delay" Parameter:

This parameter can be used to slow down cyclical error reading. The set time (in seconds)
means an additional pause between read cycles. The complete cycle therefore is equal to
the set time in addition to the time required for the one-time data transmission.

Delete ECU Error

The menu entry Delete error makes it possible to delete directly from the menu without
opening an error window.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#MIL�

Page 80

If preconditions for deleting errors are given in the system description for the respective
ECU variant, these are performed before deleting the error memory.

The selection "Delete error with log" performs three tasks in a row:

• Read error (error window is opened)
• Store error in snapshot file
• Delete Error

"Options" Button:

Through the introduction of the communication protocol UDS, additional possibilities for
configuring the Read errors process became necessary which can also be used for other
protocols.
The Options button in the Read errors window is for configuration. The function Read
errors can be configured in the dialog displayed when the button is pressed.
It is possible to set:
Again:

• The delay time during cyclical reading
• The flags used during error reading

In addition:

• If reading or deleting errors should take place on a group basis, a group can be
specified here.

The currently used protocol is displayed at the very top.
The button Advanced leads to a further dialog in which the individual protocol specific
parameters for error reading can be selected.
To make configuration easier, all five input boxes are realized as "combined list fields"
(= comboboxes).
The lists are loaded with the constants predefined in CAESAR, e.g., for the field
"Group":

Under UDS:
Example:
EEG_UDS_EMMISSION
EEG_UDS_POWERTRAIN
EEG_UDS_CHASSIS
etc.

Under KW2000:

Example :

Page 81

EEG_KW2000_POWERTRAIN
EEG_KW2000_CHASSIS
EEG_KW2000_BODY
etc.

The user can now select the values entered in the lists for the configuration or can
manually enter numerical values.
These values are used as the default values for the current error reading session when the
button "Apply" is pressed. By pressing the button "Save" the current settings are stored
permanently in the file Vediamo.ini as standard settings. By pressing "Standard", the
internal stored default settings are selected, which can be applied or saved in the
following.

"Show ROE" option:

This option button is located right at the outer edge of the error window.
A requirement for the use of ROE (Response On Event) light is, that on a change in the
status of any error the ECU puts this information with DTC number on a defined CAN
ID.
If the option is activated and ROE light is supported by the ECU and the related
diagnostic data, then a message about the change in status of a DTC will displayed in a
popup window named "ROE events" . On the first occurrence of a DTC event the
window will be openend, if it is still closed. Further events are displayed in a new line in
the same window. The user can close the window. On occurrence of a new event, the
window is reopened.

2.4.4.6 Read Permanent Errors

Since Ver. 4.1, this function is not supported any more. It is contained in the OBD2
functionality.

2.4.4.7 Error Reading by Status

Executed by the KW2000-specific function REQUEST SUPPORTED 2BYTE HEX DTC AND
STATUS ($03) , referred to as "$18 $03" in connection with Vediamo, or "Error reading
by Status".

The function is supported only by the KW2000 protocol (and analog to the UDS
protocol). Although it is possible for an application to get the name of the currently used
protocol by way of CAESAR, but it is not possible to determine whether the protocol is
derived from KW2000 or UDS base on this name (e.g.KW2C2PE, KW2C3PE, etc.). It is
therefore the responsibility of the user to use the function in a sensible manner.

A dedicated window is displayed after the menu entry is activated.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#OBD2�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#OBD2�

Page 82

A button with the error number is displayed in the window for every error. The color of
the entry depends on the error status. A legend is displayed in the window explaining the
color code. When an entry is selected using the cursor, the corresponding error text is
displayed in the lower section of the window. If not all the window entries fit in the
window, the window can be scrolled.

All supported error codes are read by Status once or cyclically, by clicking on the buttons
Read or Read cyclic, respectively, and the window updated accordingly.

A dialog for entering the name of the file to be stored is called up using the button Store
in file. The format of the log is identical to the previous format generated by the Java
routine of the same name.

The actual error reading with the KW2000 function $18 $03 is currently not supported in
a satisfactory manner by CAESAR or the available DIOGENES parameterization.

This function is therefore implemented for KW2000 in the Vediamo server using
CAESAR-API1 calls.

For this purpose Vediamo has certain minimum requirements on the ECUs used:

• Getting the total number of provided error codes with $18 $E0 must be supported.
• During the block-by-block, sequential reading of the error codes with $18 $03,

every read block should contain the number of error codes contained in the block.

The button "Permanent DTCs" starts reading permanent DTCs. All codes found in the list
of permanent DTCs gets displayed with a "P" beside the code.

For a better overview during the measurement and the subsequent evaluation, additional
services (measurements) to be executed by the ECU can be specified.
The measurements can be defined in the Systemconfiguration, similar e.g. to the ID block
extensions.
The services are executed before reading the error codes and are then displayed in the
"read errors by status window" and in the protocol file.

2.4.4.8 System Quick Test

The function Quick test makes it possible to read and/or delete the errors of all current
addressable ECUs (e.g., for a complete vehicle).

If the command line parameter -K is entered when Ecoute is started, this function is
called automatically after the program start.

For the quick test, the required DIOGENES data (.cbf) must be available in a "quick test
directory":

Page 83

The quick test directory containing the DIOGENES data can be specified in the
Vediamo.ini file under the entry:

[ECOUTE]
ShortTestDataDir=

A standard information file is used to specify the models and ECUs to be diagnosed. This
file contains information on all models available to the user. Models are maintained in the
information file with different respective engine ECUs. The default name for the file is
KurztestMercedes.ini, the content is structured, e.g., as follows:

Example:
[Models]
NumberOfModels=3
Model1=BR211
Model2=BR220
Model3=BR203

[BR211]
NumberOfECUs=5

;these are the (engine) ECUs from which the user
;must select one for the quick test
OptionalECU=1,3

;ECUx = <ECU name>, <Connection>,
; <Pin with Part E/Pinmapping>,
; <Pin without PartE/Pinmapping>
ECU1=ME28, CANHS, 1, 1
ECU2=ZGW211, CANHS, 1, 1
ECU3=CR3, CANHS, 1, 1
ECU4=ARMADA, KLINE, 6, 1
ECU5=SAMH, KLINE, 11, 1

[BR220]
...

[BR203]
...

At the start of the quick test, the user can select the information file (*.ini) to be used.
The following window is displayed after the file has been selected:

Page 84

The user can select a model here, and then one of the engine ECUs corresponding to the
model.

By pressing the button MECU auto detect.” a dialogue is opened which tries to
automatically access all engine ECUs registered for the current model. If one is detected
(with a diagnostic variant unequally the base variant), then this engine ECU can be
selected and be further used.

After selection of the model / engine ECU, the ECUs of the corresponding model
configuration are displayed in the left section of the window.

The following additional settings can also be made in this window:

• Read errors
• With environment data
• Clear errors

The Start button is then used to begin the test.

For individual specification of ECUs to be considered in quicktest, there are still the
following additional options:

Page 85

Individual selection of one or more ECUs.The selected ECUs are diagnosed, not selected
ignored.

There is a possibility to select/deselect all ECUs with a single mouse click, and to save or
load the last selection configuration. The selection of ECUs of a model is done by a
"check-box" for every ECU in the result window (selection by tick or stroke directly on
the symbol of the ECU in the tree) and four buttons with the functions "Deselect all
ECUs", "Select all ECUs", "Save filter configuration", Open filter configurations".

Function of button "Deselect all ECUs":
When you press this button all ECUs are deselected for the quicktest.

Function of button "Select all ECUs":
When you press this button all ECUs are selected for the quicktest.

Function of button "Save filter configuration":
Allows you to save the selection status of the ECUs. When you press this button, a file-
selection dialog is opened to specifiy the name of a file to save the selection state info in
text format. The file is by default with the extension .Vkk The information is stored in the
following format (example):
[General]
Version=1.0
Model=BR204
MotorECU=CR6
SelectedECUs=5
ECU1=CR6
ECU2=CGW_204
ECU3=CLAMP15
ECU4=CTRLC_204
ECU5=DAB_204

Function of button "Open filter configurations":
When you press this button, you are prompted to select a file containing a quicktest
configuration (.vkk). The contained filter information, where possible, is used to
select/deselect ECUs of the currently selected series.

A check is run first to see if a DIOGENES parameterization is available. In case of an
inconsistency, the quick test is aborted with an error message.

The actual test process is started otherwise.

An attempt is made to establish contact with every ECU included in the model
configuration using the CAESAR resource given there. If contact is established, the
errors are read and/or cleared depending on the corresponding settings. The test progress

Page 86

is displayed in a progress indicator in the quick test window, additional information is
displayed in the status window.

Upon completion of the quick test, the results are displayed in the quick test window:

The result tree on the left contains the first level of all ECUs involved in the quick test. It
is filled out when the model and engine ECU are selected. The status is displayed using
icons. There are four states:

• Unknown (gray symbol): The ECU has not been activated yet, e.g., because no
CAESAR resource was available.

• No contact (gray symbol with red "X"): Contact attempt with ECU failed, or no
variant was recognized, or the error reading failed.

• No DTC (green symbol): Number of DTCs / Events = 0
• With DTC (red symbol): Number of DTCs/Events > 0

The initial state of an ECU is <unknown>.
If an ECU has DTCs/Events > 0, it is displayed in the result tree with sub listings. These
are the DTCs, which numbers are displayed in the tree.
During the test, the state changes from unknown to one of the other states. However, the
sub listings do not automatically drop down.

Page 87

Using the right mouse key over an ECU entry opens a window in which additional
information on the respective ECU is displayed.

The section to the right of the result tree:
This section displays the environment data of the error selected in the result tree. If no
error is selected, or the ECU is selected, the corresponding ECU ID information is
displayed to the right of the result tree, with the error window below. No environment
data is shown in this case.

When an error is selected in the result tree, the error number, error text and state (MIL,
current, stored) are shown in the section on the right above the environment data.

The quick test result can be logged in a file by clicking on the Report button.
If a file named ECU-Name-Mapping.txt exists in the Vediamo quick test data, the CBF
names in the quick test are supplemented by the plain text names (in the status window,
the window with the quick test results, and in the quick test logfile).
An example with the list content:

Example:
[ECU-Name-Mapping]
EWM211=Electronic transmission selector lever module for BR211
TSG_V_L211=Front left door control unit for BR211

Presentation in quick test:
EWM211 - Electronic transmission selector lever module for BR211
TSG_V_L211 - Front left door control unit for BR211

2.4.4.9 Service Groups

Measurement and other services can be executed by a double click in the system window.
But for more advanced experiments a service group window can be defined with a
selection of services to be displayed and controlled in diagrams of several kinds: tables
(textual), bar diagrams and curves for measurement values, and an actuator window for
other services. The service group, defining the properties and content of the window is
stored in a VSG file.

To create a new service window, select Service Groups / New Group from the main
menu. If VSG files are available for the current system, select Service Groups / Open
Group to load a file.

When inserted into the window, any service gets a color assigned to for a better
orientation. The service is represented in any of the diagrams by the same color.

Page 88

The measurements can be displayed in tables, bar diagrams and curve diagrams:

To execute other kinds of services than measurement values, the actuator window can be
used:

Page 89

In this diagram every service gets those kinds of controls which are necessary to handle
it. The controls of one service are surrounded by a color frame. Use these controls to
change input params, execute the service and read OutputRef measurement (the
measurement service delivering the actual state of an actuator), if present.

Different Handling of Services In Different Diagrams

A service inserted from the system window into a measurement diagram (table, bar
diagram or curve) will be trated as a measurement service, i.e. it will be executed during
every single shot or a reading cycle, and the result will be displayed in the diagram.
Textual return values will be mapped to consecutive numbers, to make it possible to
display them in a curve. For example, "On" will be mapped to 1, "Off" to 0. If the
automatic mappings do not fit your need, you can change the mapping table in the
options of the service.

A service inserted into a actuator window will be trated in a different way. It is regarded
as an element changing the state of the system. The execution of such services is only
possible by using the "Execute" button in the actuator window.

Page 90

Nevertheless, you canb drag & drop a service from the actuator window to a
measurement window (table, curve, bar diagram). In this case the measurement window
gets several new entries:

• one or more input parameters, marked "<P>"
• the service execution itself, marked "<S>"
• if present, also ther OutputRef service of the actuator

When the service is executed (in this example: the actuator) by means of the actuator
window controls, the measurement window(s) display the following exents:

• one measurement value per input param
• the result of the execution
• the result of the OutputRef service, executed directly after the service itself.

If you do not need all of those informations in the diagram, you can delete any of it
separately.

Important: The other way round - inserting a service into a measurement window and
then into a actuator window, is not possible.

Controls of the Measurement Window

The controls of the measurement window are placed in a tollbar. Some of them might be
invisible or deactivated, depending on the current state of the window.

The function of the controls is (from left to right):

• Save service group file (VSG). All changes to diagrams, services, positions etc.
will be stored in the file.

• Save service group as a new file.
• Save measurement series. If measurements have been recorded, you can store

them in a pair of files (VSR and BIN). If no recorded values are available, the
button is inactive.

• Export recorded values into a CSV file (comma separated values),which can be
p.e. imported into Excel or a database. If no values availabl, the button is inactive.

• Save current values of all measurements into the snapshot file.
• Undo change (up to 10 steps). This restores the last state before an important

change, like adding/deleting diagrams or services, deleting recorded data etc.

Page 91

Simple resize or repositioning of windows does not count as a separate change
which can be undone.

• Redo change. Undone changes can be made again.
• Delete recorded values from memory and diagrams. If recording was running, it

will be stopped after a confirmation by the user.
• Delete recorded values up to the current position of the time slider.
• Delete recorded values starting from the current position of the time slider.
• Single shot. Read all measurements once.
• Cyclic reading start/stop. When cyclic reading is active, all services are cyclically

executed. After pausing the cycle, the time axis of curve diagrams continue to
move anf the cycle can be reactivated or single shots can be done.

• Setting the delay (in secs) for cyclic reading. The cycles can be executed as fast as
possible (delay 0) or every X seconds, as entered in the control. The delay cannot
be changed when reading is in progress.

• Record. Since this moment, all values are recorded in memory and can be saved
in file at a later time. When the check button Recording starts cyclic reading is
checked, cyclic reading will be started automatically.

• Stop. This button stops recording. If cyclic reading was active, it will be stopped
also. The window changes the mode into Analysis mode: reading measurements is
blocked, you can analyse the recorded values, change display options and save the
mewasurement values into VSR/BIN file pair.

• Check button CR = Cyclic Recording (Recording starts cyclic reading). Set this
check mark if you whish an automated start of cyclic reading when starting
recording. Otherwise after pressing the record button you have to use the Cyclic
reading or the Single Shot button.

• State of the window. If the mode is Recording or Analysis, you can see a tape
cassette resp. an eye symbol.

(2nd row, from left to right)

• Current position of the time slider. It is visible only when there are measurement
values in memory. If you enter a float value, the display moves to the
measurement point lying nearest to the specified time (starting with 0 sec).

• Time slider. With this slider you can conveniently choose the display point. You
can also use the cursor keys to change the time position.

Keyboard Usage

You can access the most important functions during measuring also by the keyboard.

• Blank (space) - start / stop cyclic reading
• Return (Enter) - start / stop recording. If automatic saving is not activated (see

configuration, below), after stopping recording you will be prompted for a file
name to save the measurement series. If you just press Enter a 3rd time, the series
will be saved with the default name (name of the window + date + time)

Page 92

• Delete - clears the memory. Any recorded values are erased from memory. If the
recorded data has not been saved up to now, you will be asked if it should be done
now. Just press ESC to delete without saving, or Enter to confirm and Enter again
to accept the default file name.

• Shift-Del and Ctrl-Del - delete the recorded values left or right from the current
time slider position.

The Modes of the Measurement Window

The window has 4 modes / states:

• Configuration mode (Free Running Mode)
In that mode you can freely configure the window: everything including adding
and deleting diagrams ans measurements. You can also read and display
measurements in the current configuration, but you cannot store them in a file
(VSR/BIN or CSV).

• Recording mode (red tape cassette symbol in the right corner)
In this mode all read values are recorded temporarily in memory. No changes are
allowed that would make the values inconsistent (i.e. you cannot add new
measurements, but you can add measurements already used in the window). If
you delete a measurement from a diagram, it will still be included in the internal
measurement list, even if it is not visible in any diagram. To see all measurements
used, select Show all used measurements from the popup menu (right click on the
empty window area).
To stop recording mode, press the Stop button or the Delete button.

• Analysing mode (eye symbol in the right corner)
You get this mode after recording measurements. Now you can neither change the
content of the measurement list (i.e. add new measurements), nor read values
from the ECU. As long as thismode is active, the recorded values are consistent.
You can change anything affecting displaying the values: min and max values,
colors, diagrams and their positions etc.
The recorded values can be saved in a VSR/BIN file couple, which includes also
the diagrams, their parameters, colors etc, or in a CSV file, which can be used in
other tools, like Excel or databases.
To leave this mode, you have to explicitly delete the recorded values or start a
new recording. In both cases you will be prompted for confirmation, if the
recorded values have not been saved yet.

• Analysing only (eye symbol in the right corner)
The difference between this and the previous mode is just that you get in the
Analysing only mode by loading previously saved measurement recordings
(VSR/BIN file couple). Because you have values from a file without a connection
to a real ECU, it is not possible to switch to configuration or recording mode.
You can change the display options (colors, line thickness a.o.) and save the

Page 93

measurement series in a new VSR/BIN couple, export to a CSV file, or extract
a service group definition file (VSG).

Configuration of the Service Group Window

Before starting an experiment or measuring session, an appropriate service group has to
be configured. Most important is the list of measurements to be read and the delay factor
todetermine how often the services have to be read.

You can insert several diagrams into one measurement window and fill them with the
same or different services. Any service used in the window will be executed always once
during one cycle, and its result is sent to all diagrams displaying it.

To fill diagrams with services, simply drag & drop them from the system window or
another window containing measurements. Alternatively you can mark services and copy
& paste them.

Important:
When no contact to the ECU is established, in the system window you can display
all variants and their service qualifiers. However, it is not possible to insert into
the service window any services which are not defined in the current ECU variant.
To insert services from any ECU variant, start Vediamo in simulation mode and
select the variant which services you wish to insert.

Important:
A service window may contain measurements of several different ECUs. If you
use this window with a system that does not include all of the ECUs, the invalid
measurements cannot be executed, so their values are not displayed.

The diagrams and services added are pre-configured and can be normally used with no or
just little need to configure them. To change the settings, simply right click on the service
or on the diagram to get the configuration dialog for that service resp. diagram.

Parameters for the Service Window

By clicking into the empty space of the window, you get the configuration dialog for the
window. Here you can change the settings affecting the function of the measurement
window:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#EcouteSimulation�

Page 94

• Title of the group.
This text is displayed in the title bar of the window

• Behaviour after stopping recording
auto-save means, when pressing the stop button, all recorded values are
immediately saved in a VSR/BIN file couple in the specified directory with a
default file name.
Ask user means, after stopping you will be prompted for a file name. You can just
accept the default name (by pressing Enter), or enter another name.
Only by user command means, you won't be prompted for saving after stopping
the recording, but only when you start any action which deletes the recorded
values (i.e. delete, start recording, close window)

• Recording limit. If greater than 0, recording will be automatically stopped after
time is over.

Page 95

• Path for storing the recorded values (VSR/BIN and CSV files). When you make
many experiments (p.e. during test journeys), it might be useful to make separate
directories for different days, subjects or cars.
If not otherwise entered, the files will be stored in the directory of the currently
opened system.

• Comment. Here you can enter any additional information in text form.It will be
saved with the service group file VSG and with the measurement series files
(VSR/BIN and CSV)

• Any other changes, like adding or removing diagrams is done directly by
choosing a command from the popup menu or by closing diagram windows.

Parameters for the Diagrams

By right clicking into the area of a diagram, but not on a service qualifier, you open a
dialog window with parameters of the diagram. It has two property pages: one with
common and one with specific parameters of this type of diagrams.

All these parameters are stored in the VSG file and are restored when the file is opened
the next time.

Common Parameters
All Diagrams have a title that can be edited. The default title describes the type of
diagram.

Page 96

Table Parameters
In Tables you can change the font (font family, size, weight etc.).

Curve Parameters
In this kind of diagrams you can set the line thickness and the color schemes. Please
regard that in a dark scheme the linesshould be lighter and in light schemes darker for a
better contrast.

Bar Diagram Parameters
Bar diagrams have no specific parameters.

Other Parameters
Positions and sizes of diagram windows, table columns etc. can be changed by dragging
with the mouse cursor.

Page 97

Params of the Actuator Window

Here you can define events at which all services should be automatically executed. A
popular use case is to execute preconditions at "window opened", or repeating setting
actuators "Every x seconds" fo some ECUs, which automatically reset all actuators after a
timeout.

 Parameters of the Services

By right clickingon the qualifier of a measurement service in a diagram (in any diagram),
you get the dialog window for setting measurement parameters.

Page 98

First, you can give the service an alternative name (alias name), which will be displayed
instead of the real qualifier or name in all diagrams of the current measurement window.

The Minimum und Maximum values determine the scaling in the diagrams (Bar and
Curve diagrams). The next time a value is read from ECU, its value is checked. If it lies
outof the limits, the limits are automatically adjusted to the new value. Those values
apply to any diagram in which thismeasurement is contained.

Also the colour attached to the measurement is used in all diagrams: if the value is
displayed as a green curve, the bar diagram shows it as a green bar and in the table there
is an icon in the same green colour beside the name.

The marker is a symbol to mark measurement points in curve diagrams.

The value table is the means to attach numeric values to texts for services delivering text
responses instead of numbers. Often used texts, as "on", "off", "yes", "no" and others are
automatically represented as 0 resp. 1. Any other text received from the ECU gets the
next free number.
If you want to change the automatically defined text-number pairs, press the Value table
button. You get a table with all values used up to now with this measurement service.
Here you can change the numeric values attached to the texts. After changing those
values, all measurement points with this text are automatically changed to the new
numeric value. So this change can be done also after recording or even after loading an
already recorded series of measurements.

On the 2nd page of the service's options you can set a trigger event. If set, recording will
automatically start when the value goes below the lower limit, or goes over the upper
limit.

With this feature, it is possible to let the program read current states waiting for some
value to be achieved and then reciording starts automatically.

You can combine this with automatically stopping recording after some time (see
optionis of the service window).

Page 99

Reading, Recording and Analysing Measurements

Regardless how many and which diagrams you have, the measurement window manages
one list of measurement services used in at least one diagram. When reading (single shot
or cyclic), every service is executed only once and its result is sent to all affected
diagrams. It is also assured that all incoming values lay inside of the scale. If any value
lies above max or below min, the limits are automatically adjusted.

In the state Configuration (Free Running) and Recording you can execute all services
(request the values from the ECU or ECUs). You have the choice between a single shot
and cyclic execution with or without delay:

• Single shot
All services in the window are executed once

• Cyclic reading without delay
All services are executed as fast as possible. In that case the order of incoming
values may change, depending on several issues. Especially, if you have services
of different ECUs, the ECUs execute them independently. This can mean, that
you receive measurement values from ECU 1 more often than from ECU 2.

• Cyclic reading with delay
When you record values over a longer period of time, itmight be useful to read the
values with a specified frequence. You can set the delay in seconds. In case that a
full cycle lasts longer than the specified delay, the repeat time is adjusted. No new
cycle is started before the previous has finished.

Memory Usage:
The recorded measurement values are stored in system memory for a fast access
and edition. Every value needs some dozens of bytes (depending on the length of
a string result). The time you can let a cycle run before your machine gets slow (it
happens when the operating system starts swapping memory contents into the
swap file), depends on the amount of free RAM and on the speed of measurement
reading.

Test your memory amount and the speed of memory filling with Task Manager before
starting important measurement series.

If your system resources are insufficient, you can increase memory reserve (by
stopping running applications and processes), reduce memory usage (by recording
with a longer delay) or by regularly saving recorded data and starting new
recording.

Recording Measurement Values

During recording the program ensures consistency of the whole series. This means, in
this mode it is not possible to change the list of used services - you cannot add new
measurements or delete any already in use.
But you still can change the following:

Page 100

• Add, close, move or resize diagrams
• Change colours, scale and value table entries
• Add, remove and move services which are already in the window

This fact has a feature which can be used for speed optimization of recording:

Performance:
Drawing diagrams highly increases the CPU load. The more drawing has to be
done, the less measurements can be executed. If you want to read and record
values as fast as possible, use just one table diagram during recording. To analyse
the data, you can open other diagrams after recording - all recorded values will be
displayed in them.

Saving and Editing Measurement Series

The recorded data can be saved (as already mentioned) in a couple of files. The VSR file
defines the window content and layout, including all parameters of measurements and
diagrams mentioned above. The BIN file contains the binary values themselves. It can be
used only in conjunction with the VSR file.
These two files must be used together and must not be edited outside of Ecoute,
otherwise they may loose their consistency.

File Name
When saving a measurement series, Ecoute creates a file name for it consisting of the
name of the measurement window, the current date and time (the moment of beginning
the recording). If you save more than one series in the same minute, the file name will be
expanded by an underline and a digit. This was it is ensured that recordings won't be
accidentally overwritten.
Of course, the user may change the deault namein the file selection dialog.

Path for Saving Measurement Series
If not stated otherwise, the files are saved in the default directory of the current system.
You may choose another path either by changing the directory in the file selection dialog
(when prompted to save), or by setting the path in the window parameter seeting dialog.
The newly set path applies to all following savings in this measurement window, either as
VSR/BIN files, or as CSV text export files.

Automatic saving
On testing journeys it might be useful to activate automatic saving (in the window
parameter setting dialog). In this mode the user has only to open the appropriate window
and establish contact to ECU before starting and can then start and stop recording by just
pressing the Enter key. When recording is stopped, the recordings are automatically
saved under the default file name.

Editing the Measurement Series
After recording, the following changes can be applied to the data:

Page 101

• Cut a part of the series. Select the cutting point with the time slider or the time
selectionline in a curve diagram. Shift-Del deletes all points before the selected
point, Ctrl-Del deletes all points after it.

• Change display options. You can add, delete, move or resize any diagrams, put
measurements into them or remove them, change the colours, scaling and markers
of the measurements.

• You can change also parameters of measurements. These are p.e. the lower and
upper limits. If a measurement service responses with a text instead of a numeric
value, the program attaches a numeric value to each text (Value table) to make it
possible to display the values graphically. You can always change the numeric
values attached to the texts - the program recalculates the recorded values in the
whole series.

These changes can be made either after recording or even to an already saved series after
loading it.

Diagram Handling

Table Diagram

In the table view the measurement values for the current (or any specified) moment are
displayed. During reading/recording, the table contains the last read values.
When you move the time slider or enter a time value in the time edit field, the last values
read before the specified moment will be displayed.

Next to the name (qualifier or alias name) you see the colour assigned to the service. This
color is used to display this measurement in any diagrams of the window.

The value of the measurement is displayed in the table as it comes: texts are displayed
unchanged as texts.

For more clarity the measurements can be grouped and separated with a comment.

The font and the sizes of the columns can also be changed. When the names are very long
or not very informative, instead of adjusting the width of the name column, you can
assign alias names to the services. These alias names will be then displayed in all
diagrams.
When the mouse cursor stops on the name or alias name, you can see a tooltip with the
full name, qualifier and the ECU qualifier.

Bar Diagram

The bar diagram shows the change of the measurement values as a horizontal coloured
bar. At a glance you can see how the values change. The whole width of the diagram
window is used for all values between the lower and upper limit of the measurement.

Page 102

The diagram displays just the current (last read) or selected (by the time slider) values.

Clicking on the name of a measurement selects it. Above the bars a scale for the selected
measurement is shown.

There are no more settings in this kind of diagram.

Curve diagram

The curve diagram shows the chronological development of values.

The area on the left contains a list of measurements to be shown in the diagram. As in the
other diagrams, here you can control the settings of the measurements (right click ->
popup menu -> options -> parameter dialog). With the left mouse button you can select a
measurement. The actions of the window's controls affecting measurements apply always
to selected measurements. If none are selected, they apply to all measurements.

By clicking on the check mark next to the name, you can switch displaying this particular
curve on and off. The controls' actions are ignored for measurements which are switched
off, regardless of their selection state.

The right area contains the curves and the focus line. The focus line can be moved by
dragging the triangle with the mouse.

If you drag the line with the left mouse button, it moves over the values of the curves.
When dropped, it jumps to the nearest value point. All other diagrams also change to the
selected display point.

If you drag it with the right mouse button, the line moves the curves also. The selected
display point is not changed.

The x axis of the curve diagram can be "detached" from the window's time by clicking

Page 103

the button. In this state, changing the selected display point in the curve diagram
does not affect the other diagrams.

This can be used p.e. to analyze earlier parts of the curve during still running recording.

During measurement reading, new values always appear at the focus line, if the diagram
is not in the "detached" state. All the curves are moved to the left as time passes. They are
moved even if no new values are received, until you stop reading or recording by
pressing the stop button.

Controls in the Curve Diagram

 Press this button to move the curve to the previous point of selected measurements

 Press this button to unselect all measurements

Press this button to select all measurements. This does not affect the display state:
unchecked measurements stay not displayed.

 Press this button to move the curve to the next point of selected measurements

 Press this button to zoom into the time (x) axis

Press this button to zoom out of the time (x) axis.

Press this button to zoom into the y axis of selected measurements

Press this button to zoom out of the y axis of the selected measurements

Press this button to select a section of the x axis which shall be expanded to the full
length

Press this button to select a section of the y axis which shall be expanded to the full
height (affecting selected measurements)

Press this button to select an area of the diagram to be expanded to the full diagram
size (x and y directions). This also affects the selected measurements in y
direction.

 Press this button to show the full curve on the x axis. If the reading is in progress,
all values from 0 to the current point are expanded to the full axis length.

 Press this button to maximize the curves of selected measurements to the total
height of the diagram.

Press this button to detach the x axis from the time of the whole window.When
detached, changing the position of the focus line does not affect the other
diagrams. Also the position of the time slider does not affect the detached curve
diagram.

Page 104

Actuator Window

A color frame contains all controls needed for using the service.

 expand frame
 collapse frame
 execute service. The param values entered previously (or loaded from file) will be

used.
 open window for entering input param values. After setting params no execution

is performed.
 open slider control for convenient settings. Changing the value changes the param

value and executes the service. The last used param value is stored for later usage.

There are also three more buttons:

 execute all services

 expand all frames

 collapse all frames

Page 105

2.4.4.10 Variant Coding

The current state of the variant coding can be read and modified with Ecoute. Proceed as
follows:

• Select Coding / Variant coding in the Ecoute main menu.
• The variant coding dialog is opened.

If preconditions for variant coding are specified in the system description for the current
ECU variant, these are executed when the window is opened. If services with input
parameters are specified as preconditions, an appropriate dialog is displayed in which the
user can enter the parameters.

Services

All the ECUs coding services are displayed in this dialog field. When a service is selected
from the selection list, all fragments and the respective values in the "selection window"
are displayed in the lower section of the dialog.

Current Coding

The current coding string from the ECU is read and displayed when the dialog is opened.
Fragments and values (max. 4 lines) matching the coding are displayed in a list field. If
the coding is not found in the parameterization, "unknown" is entered under values.
The coding string can be displayed either in decimal or hexadecimal format depending on
the setting in Vediamo.ini. The coding string format is specified by the

Page 106

"VarCodStringFormat" entry in the [ECOUTE] section of Vediamo.ini. This entry can
have the value "Decimal" or "Hexadecimal". The value "Decimal" means that the
coding string is displayed in decimal form. The value "Hexadecimal" means the coding
string is displayed in hexadecimal form. The coding string is in decimal format by
default.

Selection

All parameterized fragments of the selected service are displayed along with their values
in this section of the dialog. The filed Coding string contains no values when the dialog is
opened. As soon as a value is selected from the list, the corresponding coding string is
displayed immediately. In addition, the difference between the current coding string and
the selected coding string is evaluated and the position where the two strings differ is
marked with the numerical value of the difference (decimal: absolute value of the
difference of the two values; hexadecimal: bitmask of changed bits).
Externally parameterized coding fragments: Coding fragments which are parameterized
by way of external files (ccf suffix), are denoted in the dialog by the suffix (ex).

Save to File

The variant coding can be stored in a snapshot file by clicking this button.

Close

Clicking this button closes the variant coding dialog. After the button is pressed, any
postconditions regarding variant coding included in the system description are executed,
in the same way as the preconditions described above. If the option shut down cycle for
coding is activated in the VSB and coding was performed in Ecoute, the shut down cycle
dialog is then opened. The dialog prompts the user to turn the ignition off and then on
again.

Manual Coding

Clicking on the button Manual coding opens a dialog, in which the coding string can be
edited manually.

Page 107

The coding string in the edit field is taken from the selection field. If the selection field
does not contain a string, the coding string is taken from the field of the current coding
string. The user can edit the coding string and execute the variant coding by clicking on
the ECU-Coding button. The dialog is closed without coding by clicking on the button
Close.

You have the possibility of naming your own coding strings and storing them in a list
(Add to list button). Strings in the list can also be deleted (Delete button). The compiled
list can be stored in a file (Save file), or previously compiled lists can be loaded from a
file (Open file). This is particularly useful when the number of combinations is very high
and working with your own selection lets you work more effectively.

The coding string loaded from the file is displayed in a decimal or hexadecimal format,
according to the parameter VarCodStringFormat in the file Vediamo.ini. The format in
which the string is stored in the file might be decimal, hexadecimal or even mixed (p.e.
"123 001 5D 7F 111") and it has no influence on the display and entering format.

2.4.4.11 Flashing
Ecoute allows you to read and modify the current state of the ECU flashware. Proceed as
follows:

• Select Coding / Flash from the Ecoute main menu.

Page 108

• The flash dialog then appears.

If you have no flash data for the contacted ECU, no window opens at this point. The
message appears in the status line, that no flash data is available for this ECU.

Important:
Note that the DIOGENES name in the ECU data (CBFs) must be the same as that
entered in the flash data (CFFs). This prevents the wrong data from being flashed
on the ECU.

Ecoute allows you to flash multiple areas in a single flash process. The number of areas
to be flashed at the same time in a flash process is specified in the system description
under ECU properties. The default setting is one area per flash process.

Current Flash Status:

This section of the window contains a list field, in which information on the flash data
can be displayed. The information is specified in the system configuration as follows:
For every ECU variant, any services which provide the user with additional information
on the ECU can be listed and assigned in the properties dialog (system configuration,
function ID-Block Information). To display this information, Ecoute queries the ECU for
the ID of the services entered in the system configuration and then executes them. The

Page 109

service ID (e.g., "Software Status", "Code", "Boot Block", etc.) is displayed in the left
column Description and the result from the execution of the respective diagnostic service
in the right Value column.

Selection:

This section of the window has two list fields. The first list field displays the flashware
assembled by the user. The second list field displays the lists of the available flash areas,
flash meaning and flash keys. The user can choose the grouping criterium for the
displayed data by selecting it in the Group combo box. The selected group is displayed in
the lower left list box.

The check boxes described as Columns can be used to select which information sould be
displayed for the selected group. The positions of the columns can be changed by drag &
drop. They are saved automatically when the dialog window is closed, and restored when
it's opened the next time. Clicking on the column title changes the sort order of the list
items.

If "1" is entered in the system description for maximum number of areas to flash
simultaneously, than only one flashware can be flashed in Ecoute during one flash
process. In this case, the user has the possibility of selecting one meaning or a FlashKey
for the currently selected area and flashing the ECU by clicking the button Flash.

If the maximum number of areas to flash simultaneously becomes greater than "1", then
several meanings to be flashed can first be added to the first list field using the button
Add. When the button Flash is clicked, all the meanings in this list will be set in the
sorted order. Afterwards, the set meanings will be flashed in the correct order. The status
of the flash process will be shown in the progress display. After the flash process has
ended, the user is prompted to turn the ignition off and back on again after the shut down
cycle.

If a meaning parameterized as "late binding" is selected, double clicking or using the
<RETURN> key will cause an Open File dialog to appear. The user can select the
appropriate file from this dialog. The name of the selected file is entered in the list field
under the column Meaning. The flash process can then be started with the button Flash,
just like in the case with early binding.

The segment information for every flash meaning can be displayed. Select a flash
meaning in the right list box and press the right mouse key. A dialog opens which
displays the segments of the currently selected meaning. A segment is understood to be
the starting address of the area and the length of the flash region. Note that the segment
information of an area can change depending on the set meaning. Depending on the
diagnostic data, an area/meaning combination can have several segments.

Page 110

Button “disable normal message and disable fault codes”:
Since employment of CAESAR 3.0, no automatic Disabling of normal message and fault
codes of the remaining bus participants takes place while flashing an ECU in the vehicle
(vehicle is contacted via the OBD socket / tester is connected to the gateway controller,
e.g. to the Powertrain CAN).

This mechanism was provided there so far by CAESAR 2.x (only keyword protocols
were supported).

Starting from CAESAR 3.0 , due to the fact that several protocols may be used in one
vehicle, the mechanism "disabling normal message and fault codes" must be provided by
the application.

The Disabling of the remaining bus participants is made with a functional message by a
fixed Identifier. Over this Identifier then cyclically "tester present" must be sent, in order
to keep Disabling upright. To stop Disabling, another message must be sent, or sending
"tester present" must be terminated. The same applies to the suppression of error
registrations (however with other messages and on other identifiers).

"Disabling normal message and fault codes" is protocol related, i.e. for each protocol the
mechanism must be activated separately.

The ECOUTE Client supplies such a mechanism over the button “disable normal
message and disable fault codes”.

By application of this mechanism, a higher flash performance is to be expected .For
flashing at the vehicle, a mechanism is implemented, which switches the remaining bus
participants during the flash procedure mutely and suppresses error registrations. The
mechanism currently supports both the Keyword and UDS protocol. The
activation/deactivation of the mechanism must be made by the user manually by pressing
the related button at the suitable time. The mechanism is activated / deactivated over API
1. The description of the services is specified in a file "SpecialFunctions.ini", which is
located in the Vediamo program folder. The file can be edited by the user.

Button "Flashdata administration":
When pressing the button "Flashdata administration", a window providing the following
functions will be displayed:

° The Tree-Control on the right side shows the currently in caesar registered .cff
files.

° The function "Add" opens a file-selection dialog in which other .cff files or a
directory can be selected. Newly selected files / files in the selected directory are
immediately registered at caesar. Probably occuring errors are displayed in the
status window.

° The "Remove" function deregisters the currently selected file at caesar.

Page 111

° The function "Load standard list" unloads all currently loaded flash files and loads
instead the flash files listed in the file \ \ Flashfiles.cfg If the file does not exits, no
flash files are unloaded and an error message is displayed instead. If no system is
loaded, this button is disabled (grayed).

° The function "Save standard list" stores the names of all currently loaded flash
files in the file \ \ Flashfiles.cfg If no system is loaded, this button is disabled
(grayed).

° The function "Load list" prompts for a .cfg file name,unloads all currently loaded
flash files and loads instead the flash files listed in the specified .cfg file.

° The function "save list" prompts for a .cfg file name and then stores the names of
all currently loaded flash files in the specified file.

° "Close" closes the Flashdata administration Dialog.
° Under every file entry in the tree the related flash file contents (Areas, Meanings,

Flashkeys) are displayed. When the user changed any flashdata in the Flashdata
administration Dialog, the superior flash dialog will be updated subsequently: The
list of selected meanings will be deleted, the list of available flashware is rebuilt.

See also "Flash an ECU"...

Warning: Flashing overwrites the ECU software.
Erroneous flashware can possibly destroy the ECU.

2.4.4.12 OBD2
The OBD2 function is similar to a Scan-Tool resp. OBD2 or EOBD regulation and gives
the Ecoute user direct access to the most important diagnosis data (DTC - diagnostic
trouble codes, current data, OBD tests for the lambda sensor, ignition, catalysator etc)
without specific ECU files (*.cbf files).
To access these information, ten modes are defined:

• Mode 1 - Current diagnosis data (PIDs)
• Mode 2 - Freeze Frame (PIDs)
• Mode 3 - exhaust relevant stored DTCs
• Mode 4 - clear exhaust relevant stored DTCs
• Mode 5 - Test results of oxygen sensors
• Mode 6 - Test results of diagnostic functions (MIDs)
• Mode 7 - exhaust relevant DTCs of the current or last driving cycle
• Mode 8 - Controlling the On-Board System
• Mode 9 - Vehicle information (Info IDs)
• Mode 10 - exhaust relevant permanent DTCs

The standard of OBD2 function is defined in the norm ISO-15765-4 (Road vehicles -
Diagnostics on Controller Area Network (CAN) - Part 4: Requirements for emissions-
related systems)

Page 112

Functionality

The OBD2 function can be opened and closed by the menu item System / open OBD2 or
close OBD2, or by clicking the OBD2 buttons in the Ecoute tool bar.

The OBD2 window

After opening the OBD2 function two separate windows are opened: the OBD2 System
window and the Display window.

OBD2 System window

The OBD2 System window has the same structure as the Ecoute Sytem window. It
contains tree branches for all the ten OBD2 modes. Every branch contains all defined
services (PID, TID, MID and info ID):

Page 113

Functionality:

The OBD2 System window displays all defined services regardless if they are supported
by the current ECUs. By double click (or select and press ENTER) the service is
executed and the result(s) displayed in the status window.

Executing a service not supported results in the information that the execution is finished,
without any result.

From the context menu of the mode branch, the function Execute All calls the execution
of all supported services of this mode for every ECU separately. In this case every result
is displayed in a separate line, followed by the metric (shortcut for the meaning).
From the copntext menu of every service, the properties of the service can be opened.

Page 114

OBD2 Display Window

The OBD2 display window consists of a big display area, a common and a special toolbar
with buttons and a tab bar.

The tabs are used to select which mode to be executed and displayed. Changing the mode
causes also activating od deactivating special buttons in the lower special tool bar.

Page 115

Functionality of the common tool bar buttons

Save log. All values read, contained in all mode pages, will be saved in a txt
or html log file.

 select all elements of the tree on every mode page

 deselect all elements of the tree.

 Restore selection state as it was when window was opened.

Read all Modes Execute all selected services of all mode pages.

The selection state of all services and ECUs, as well as the width of the table rows (can
be changed by drag&drop), are stored in the file OBDWin.ini when closing the window.
During opening it the next time, the states will be restored again.

The special tool bar contains up to three buttons, depending on the chosen mode page:

Page 116

Read execute all selected services on the current mode page

Cyclic update cyclically repeat execution of selected services of the current mode page

Clear errors delete stored DTC by using mode 4

Differences between the modes in the display window:
The OBD modes are selected by clicking on the tabs. Every mode has a special table
structure. The left column contains a tree view with all ECUs and their services:

• Mode 1
o level 1: ECUs
o level 2: Service - all supported services (Mode_PID_Name)
o level 3: Results - one service can deliver more than one result value

• Mode 2
o level 1: ECUs
o level 2: Fehlercodelevel - Anzeige aller gespeicherte Fehler
o level 3: Freeze Frame Services - all supported services

(Mode_PID_Name)
o level 4: Results - one service can deliver more than one result value

• Mode 3 /4
o level 1: ECUs
o level 2: Read stored DTC service
o level 3: single DTCs - Code, SAE and DCS/DCA description

• Mode 6
o level 1: ECUs
o level 2: Service - all supported services (Mode_MID_Name)
o level 3: Results - one service can deliver more than one result value

• Mode 7
o level 1: ECUs
o level 2: Read current DTC service
o level 3: single DTCs - Code, SAE and DCS/DCA description

• Mode 9
o level 1: ECUs
o level 2: Service - all supported services (Mode_InfoType_Name)
o level 3: Results - one service can deliver more than one result value

• Mode 10
o level 1: ECUs
o level 2: Read permanent DTC service
o level 3: single DTCs - Code, SAE and DCS/DCA description

Every ECU and service has a checkbox. By marking it, the user decides which services to
execute. Unmarking an ECU, all services of this ECU are not executed.

Output files / OBD Log

Page 117

The results can be saved in a text or HTML file. By clicking the "Save log" button, the
user is prompted for additional information to be saved: name, company, vcehicle
information, and the name and format of the log file.

To make the file more readable, the name/description of the values are put to the end of
the lines.

Timing Problems:
With fast PCs (double and quad core) and the eCOM diagnosis hardware some
timing problems might occur. If you cannot access the ECU by OBD2
communication, although normal communication works, the problem can be
solved by increasing the values for the parameters OBD_P2_MAX (above 250) and
OBD_REQREPCOUNT (above 1). See also INI Parameters for [SERVER]
Important
Higher values for the above parameters slow down the OBD communication
during the initialization.

2.4.4.13 Configure Ecoute and Server Options

Ecoute Interface

You can manipulate the Ecoute windows as needed with the mouse. The positions and
sizes are automatically stored in the configuration file when the program is ended, and
are restored the next time the program starts. The service group, measurement group and
actuator group windows are stored in the VSG, MWG and STG files.

Ecoute Session

The following Ecoute properties are stored in a session file (VSC) to be restored the next
time the program starts:

• Selected system, ECU contact status and channel assignment
• Size, position and partitioning of the status, selection and main window
• All open windows (error, measurement, actuator and trace) with their positions

and sizes
• Presentation options

Further Options

A window for setting numerous options can be reached from the main menu under Extras
/ Options. The set options are stored in Vediamo.ini. They can be modified there using
the INI editor or a regular text editor.

The options are divided into three groups and each group is edited in its own window.
The tabs at the upper window edge (CTRL-TAB) make it possible to switch between the
different windows.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#INIParameter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 118

General Options

Switching Between Name and Qualifier Display

DIOGENES services are entered in DIOGENES using unique IDs called qualifiers.
Qualifiers uniquely identify a service. Vediamo Java routines always use qualifiers.
In addition, each diagnostic service is given a name. This name is not unique, but allows
the user to give the service a meaningful ID.
In Ecoute, it is possible to switch between displaying qualifiers and names using the
options dialog. Simply select the desired setting. The display of names or qualifiers
applies to all windows (selection window, measurement group, actuator group,...) of the
Ecoute application.

Snapshot File

Ecoute allows the storage of snapshot files. The path and filename for the snapshot file
can be set in the options dialog (Extras / Options). Select the "..." button directly next to
the "Snapshot File" entry field in the options dialog. This opens a standard file selection
dialog. Navigate to the desired storage directory and enter the filename of your choice.

Hardware Options

Hardwareoptions are edited in the startcenter application.

Start Options

Load Last Session

If the field Load last session is activated, the last selected session file is automatically
loaded the next time Ecoute is started.

Establish Contact Automatically

Ecoute establishes contact automatically with ECUs in the following three different
cases:

1. After selecting a system (initial contact)
2. When contact is lost due to external effects
3. When the user's attempt to establish contact fails

All cases can be configured independently using the options dialog. If automatic contact
is active, the user can see the appropriate message in the status window.

In cases 2 and 3, contact is attempted until it is either established, or the system is locked
or switched, or the option is reset.

Page 119

Establish Contact Automatically After System Selection

If the option After system selection is set, contact is attempted with all ECUs contained in
the system immediately after the user has opened the system. IF more ECUs are in the
system than free CAESAR channels, an error message is displayed for each ECU which
cannot be assigned to a CAESAR channel. If the first contact attempt for an Ecoute
system selection fails, a further option (case 3) determines whether contact with the
respective ECU should be attempted cyclically.
Important:

For manual command input (Ecoute), no automatic initial contact is ever
performed, i.e., the option for automatic contact is not evaluated when a VND file
is loaded.

Establish Contact Automatically After Losing Contact

If contact with an ECU is lost due to external influences (physical connection is pulled,
disturbances on the line, ECU doesn't reply, etc.), the attempt will be made to re-establish
contact with the respective ECU if the option After contact loss is set.

Important:
For manual command input, contact will not be established automatically,
independent of this setting.

Establish Contact Automatically After Failed Contact Attempt

If the option After failed contact attempt is set, cyclical attempts to establish contact with
an ECU are made after an unsuccessful attempt. This also applies to initial automatic
contact after system selection.

Important:
This does not apply to contact attempts coming from Java routines. It also does
not apply to contact attempts using manual command input.

Automatically Execute Initialization Services

The initialization services contained in a system description can be started after the
system has been loaded or after communication has been established. The Ecoute client
starts the services independent of the related options which can be set. A system
description can contain multiple initialization routines. The system init routines are
executed if the option After system selection is set, the ECU and ECU variant init services
are executed if the option After contact is set.

An init service is started under the following circumstances:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ManualComman�

Page 120

1. System init routine (only if the option After system selection is active): Each time
a new system is started or selected, the Ecoute client checks whether the option
After system selection is set. If it is, the Ecoute client informs the diagnostic
server, that the system init routine should be executed. The diagnostic server
executes the Java routine, if one is included in the system description.

2. ECU init services and ECU variant init services (only if the option After contact is
active):
After each time that contact has been established to one of the ECUs in the
system, the Ecoute client checks whether the option After contact is set. If it is,
the Ecoute client informs the diagnostic server, that the init services of the
relevant ECU should be executed. The diagnostic server than executes the ECU-
related init services of the ECU first and immediately afterwards, the variant-
related init services of the identified variant or the basic variant, if these are
included in the system description.

If multiple Ecoute clients are present, the diagnostic server ensures that init services are
only executed once after a new system selection or contact with an ECU (prior to new
contact or contact loss).
The relevant option settings are stored in the Vediamo.ini file under the following key:

[Ecoute]
ExecuteInitSequence = <Key>

The following applies for <Key>:

0 No init services are executed
1 After system selection
2 After contact
3 After system selection and after contact

Logging Options

Ecoute allows the communication with the ECUs and the diagnostic server to be logged
in different ways, and the logs to be stored in files. The type of log can be specified in
this window. In addition the display shows in which files the log data is stored.

DCDI Channel (Ecoute Client)

This specifies in which format the ECU communication is displayed in the trace window
that can be called up in Ecoute using the menu selection Extras / Trace display. The
complete name of the protocol file is also shown. This name is always combined with the
qualifier of the relevant ECU. The following trace formats are possible:

Data Blocks
The request and response are both shown in hex format and logged in Ecoute
when this option is activated.

Page 121

Bytes & Timing
The communication between ECU and tester is logged in detail if this option is
activated. This function is called monitoring. Monitoring should only be used for
debugging on the ECU communications protocol level.

A button allows a dialog to be called up to select the directory in which this ECU-related
data is logged. During logging, these files are stored under the name <ECU>Trace.log in
a subdirectory with the name of the system.

DCDI Channel (Diagnostic Server)

All data for logging the ECU communication which is displayed in Ecoute must be
transmitted by the diagnostic server to the Ecoute application. This transmission process
requires a certain amount of time. For time-critical diagnostic procedures therefore, it
makes sense to record the log data directly in the diagnostic server. The complete name
of the logfile in the diagnostic server is shown in the window. The behavior of the server
can be controlled with the following entries:

Diagservice & Data Blocks
The qualifiers for the executed diagnostic service, the request and response in hex
format, and additional ECU-related CAESAR logging information is recorded by
the diagnostic server.

Bytes & Timing
The communication between ECU and tester is logged in detail (monitored) when
this option is activated, in the same format as already described further above.

It is not possible to select both options at the same time.

A button allows a dialog to be called up to select the directory in which this ECU-related
data is logged. During logging, these files are stored under the name <ECU>Kanal.log in
a subdirectory with the name of the system.

In the trace window in Ecoute, when tracing a CAN bus, the filter settings for Bytes &
Timing are displayed:

• Filtering active / not active
• Active filters
• Name of currently used filter file

If the communication is based on a CAN protocol, the following applies for logging the
DCDI channel communication:
Accumulated CAN monitoring data is filtered. By default, only the CAN messages with
the CAN IDs of the respective ECU from the current CBF are logged. In place of the
CAN ID, the ECU qualifier is shown in the log.

Page 122

In the Vediamo.ini file, there is a key:

[CAESAR]
"MonitoringFilterCANIDs"= 0 | 1 .

If this key has the value 0 then, as before, no filtering of the monitoring data takes place.
If the key has another value, or is missing completely, the monitoring data is filtered (=
default setting).

Two comparators per ECU are used as criteria for the filtering:
CP_REQUEST_CANIDENTIFIER and CP_RESPONSE_CANIDENTIFIER. When a new CAN
message is read from the monitoring buffer, a check is made whether the CAN ID
corresponds to one of these comparators. If not, the message is filtered (if filtering is
activated in Vediamo.ini).
The ECU qualifier is entered in the log in place of the CAN ID.

In addition, filter specifications can be made in a text file for any desired CAN IDs.

The text file format is given in the following example:
Example:
;Assignment CAN-IDs →ECU identifier
2016,ECU
2024,ECU
;
786,Uknown$312
528,Unknown$210

Lines that begin with a semicolon are interpreted as comment lines and are ignored.

For filter specifications, the CAN ID is listed in decimal form first and then, separated by
a comma, the identifier to be displayed.

The content of the file can be changed during runtime. The filter information is updated
after contact has been established with the ECU.

The name of the filter file to be implemented is specified by the Vediamo.ini entry

[CAESAR]
MonitoringFilterCANIDFile=

Example:
[CAESAR]
MonitoringFilterCANIDs=1
MonitoringFilterCANIDFile=C:\ProgramData\Vediamo\Config\CANIdFilter.txt

Status Messages

Page 123

If the option Generate Status Logfile is activated, all outputs in the Ecoute status window
are also written into the file whose name appears in the option window.

Setting Options using Command Line Parameters

When starting Ecoute, any keys from the Vediamo.ini file can be entered in the
command line (next to the name of the session or system description to be loaded). The
entered keys are valid for the duration of the running diagnostic session.
The command line syntax looks like this:

Ecoute.exe /VI "[Section] Key Value ... [Section] Key Value ..."

The option /VI or -VI serves to differentiate between session/system description names
and Vediamo.ini keys. The list of keys to upload must be enclosed in quotes.
When Ecoute is started with the /VI option, the superseding Vediamo.ini keys are
transmitted to the server application prior to booting the server. There they are used
temporarily in place of the corresponding values in the Vediamo.ini file.

Exceptions

This mechanism only affects the Ecoute instance which starts the server. If the server is
already in operation, it ignores the keys specified in the Ecoute command line.

The key that defines the language setting ([Common]Language) on the server side cannot
be overwritten, since this key goes into effect directly after the server application is
started by the operating system (even before Ecoute can transmit any keys for writing
over).

Specified keys are not only effective in the server, but in Ecoute as well, i.e., the
temporary values are used when Ecoute accesses Vediamo.ini keys as well. The
exception for Ecoute are the hex coded entries which contain information on the various
Ecoute windows.

If the server was started with overwritten Vediamo.ini values, the following information
is shown in the information window for every Ecoute client that takes up contact with the
server (Example):
"Server/Application was started with partially overwritten
initialization parameters: [Ecoute] ProgramLogpath c:\Logtest\Client
[Server] ProgramLogPath c:\Logtest\Server"

Example:
Ecoute.exe /vi "[CAESAR] USE_SIPartEDriver 1 [CAESAR] PinMapping 1"

Starts the server with activated CAESAR Part E and activated pin mapping.
Example:
Ecoute.exe /vi "[CAESAR] USE_SIPartEDriver 1 [CAESAR] PinMapping 1 [Ecoute]
UseFilters 0"

Page 124

Starts Ecoute with filter function off, and the server with activated CAESAR Part
E and activated pin mapping.

If Vediamo.ini entries are changed and written during a diagnostic session, e.g., from
the Ecoute Options dialog, then modified key values which were uploaded at the start of
the session are only updated temporarily for the duration of the session. The changes are
not made permanently in the Vediamo.ini file.

Specify Text Language in Applications

The text language for the Ecoute applications (menus, messages, etc.) can be displayed in
different languages. The translated text must be available in a DLL (e.g.,
Ecoute_Res_EN.dll for English). The language is selected using the entry LANGUAGE in
the Vediamo.ini file [Common]section.
In Ecoute, text which is not defined in the application but rather comes from the
DiagServer is also output. The language version of these texts is determined by the same
entry in the Vediamo.ini file which is located on the server. The translated server text is
in the VCommon_Res_XY.dll, where XY is the language abbreviation.

Specify Language for Diagnostic Data

The texts for the ECU parameterization and messages from the CAESAR hardware can
be displayed in different languages. Appropriate CTF files must be available. The
language is selected using the entry LANGUAGE in the [CAESAR] section of the
Vediamo.ini file on the server.
Furthermore, the language for each ECU can be changed during runtime using the ECU
properties dialog. This change affects this one ECU and impacts all client applications
connected with the same DiagServer.

2.4.4.14 Macros

In Ecoute macros serve to record, store and subsequently deliver and execute certain
frequently called function sequences. Macros are stored as text files with the.mak
extension.

The macro functions can be reached using the menu selection Extras / Macro.

The following functions are available:
Record Macro:

After this function is called, the subsequent actions performed in Ecoute are
recorded. The dialog "Record macro" is displayed at the upper right, listing the
recorded macro commands. Recording is ended with "End macro recording". The
name of the file in which to store the recorded macro has to be entered in a dialog.

Execute Macro:
When this function is called, a previously recorded macro file can be selected in a
file selection dialog and subsequently executed. Only one macro at a time can be

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�

Page 125

recorded or executed.
The name of a macro file can also be entered as a command line parameter when
Ecoute is started. Ecoute then executes the respective macro file after starting.
The names of the last three executed macros can be selected directly in the menu
Extras / Macro.
When recording and executing macros, only the sequence of the individual
function calls is considered. The time intervals between the individual function
calls cannot be recorded or reproduced.

The following actions in Ecoute can be recorded and reproduced in macros:

• Select system
• ECU: Establish/terminate contact
• Read/delete errors
• Store error data in file
• Close error window
• Open measurement/actuator window, read values
• Store measurement/actuator window in file
• Close measurement/actuator window
• Adjust actuator
• Display graphically, open, read for x seconds, and store measurement values. The

measurement values in the graphic window are read cyclically for as long during
macro execution as the graphic window was open during recording.

• Execute all services, if necessary with preparations. Can be selected in the control
tree under the menu entry Services. (Including Java routine)

• Variant coding: setting/coding individual fragment values of a selected coding
service. (No manual coding)

• Flashing
• Quick test
• Delay: A delay interval can be inserted into a macro. First a delay entry must be

inserted in the macro manually with an editor. Example, wait 5 seconds:
“Delay||5000”. During the macro replay the execution is interrupted with a delay
line for the interval indicated there (in ms).

• End program

When replaying macros, input parameters of services can be specified alternatively
manually. To the inquiry of input parameters the macro file must be worked on with an
editor:
If a parameter in a macro line is to be queried, the sequence “??” must be specified in
place of the parameter as a marking , afterwards optionally a text, afterwards again
optionally “??” and a default value.

The text serves as note for the user. Example: Macro line after the macro recording:
...
SetInputParam||CR3||ADJ_Injektorklassierung_ZYL4||0||Kl. 3
ExecuteService||CR3||ADJ_Injektorklassierung_ZYL4

Page 126

...
Now the input parameter 0 of the service ADJ_Injektorklassierung_ZYL4 is to be queried
each time during the execution.
The macro file can be adapted in such a way:
...
SetInputParam||CR3||ADJ_Injektorklassierung_ZYL4||0||??Inj.Klassierung Zyl.4:??Kl. 3
ExecuteService||CR3||ADJ_Injektorklassierung_ZYL4
...

Macros can be selected as an initialization service. Macros with the special name
<SystemName>_SysInit.mak and <ECU Qualifier>_EcuInit.mak are treated as
initialization services by Ecoute. When a new system is loaded, Ecoute checks whether a
macro ...SysInit.mak is in the current system directory and execute it if available.
If contact has been established to an ECU, Ecoute checks whether a macro
...Ecunit.mak is in the current system directory. If so, it is executed. The name of the
system or the ECU qualifier must precede the names of these macros.

2.4.4.15 Java Routines

Routines (Java Routines or processes, called scripts in earlier versions), if at hand, are
displayed in the selection window in their own directory. They can be started just like
every other service with a double-click (or select and press <ENTER>). The precondition
for proper execution is that Java Runtime is properly installed and all settings in the INI
file are correct as well as the Java program that implements the routine is correct.

Every Java routine can have predefined command line params stored in the system
descriptioni file. By double-clicking the routine in the system window, it is started with
the predefined params. It is possible to have several entries starting the same Java file,
but with different params.

To start a Java routine with params different than stored in the system description, call
the context menu by right-clicking the rouotine symbol. An input window will appear
where you can overwrite the original parameters.

As soon as a Java routine starts, a window opens showing active Java routines. This
window can be used abort the Java routines if necessary.

The outputs and user interactions depend on the executed Java routine. Please read the
documentation on handler functions for the possibilities offered by a Vediamo Java
routine. The basic possibilities for output from or user interaction via a Java routine are:

• Outputs in the Ecoute status window
• Receive yes/no query responses from user
• Receive text input from user
• Signal tone

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�

Page 127

2.4.4.16 Routine Generator
The routine generator allows to create and edit complex routines using a GUI without the
need of knowing Java. The routine generator appears as a window in the Ecoute
Application. It consists of four areas (symbol collection, drawing sheet, properties dialog,
tool bar). It can be opened beside the other Ecoute windows and therefore services from
the system window can be dragged and dropped directly into action elements.

To open the routine generator with a new or an already existing routine, use the menu
System / Routines / New Routine or System / Routines / Open Routine.

A routine can also be started directly from the system tree window or from the menu,
when defined as standard objects.

2.4.4.17 Use Cases
the routine generator allows the user to define complex routines by graphically designing
a flow chart consisting of the following functions:

• one-time or cyclic reading of data
• setting adjustments and controlling actuators
• decisions based on the results of other actions or on user input
• getting input from the user or from a text file
• delays and time stamps
• using variables and assignments
• regular expressions

2.4.4.18 Elements of the Window
The window of the routine generator consists of a frame with controls (Toolbar) and three
main areas:

• left area - Symbol window
• center area - drawing window
• right area - property window

Page 128

The control elements are grouped in the tool bar. Depending on the state, some of them
may be inactive to prevent wrong usage. The following table describes all controls of the
routine generator.

Toolbar of the routine generator

 Save Button - save routine in a *.xml file without changing the file name.

 Save As Button - save routine in a new *.xml file

 Print Button - prints the entire routine or the content of the drawing sheet.

Validate Button -manual control/validation of the routine basing on the scheme. The
validation result is visualized graphically.

 Execute Button - execute the routine.

Options Button - Opens a window to display and edit the options of the routine
generator.

 Undo Button - undo up to 10 actions performed by using the controls..

 Redo Button - redo the undone actions.

 Delete Button - delete action sybbols in the sheet.

 Zoom Fragment Button - Zoom a fragment defined by the user.

Page 129

 Zoom Button - Display the last fragment.

 Zoom out Button - shrink the sheet

 Zoom in Button - enlarge the sheet

 Toggle Button - Zoom off / display entire area.

 Move fragment Button - Moves a defined area of the sheet.

Symbol window (left area):

The left area contains all usable action symbols. The symbols can be individually
reordered using the button Options. Drawing the mouse cursor over a symbol displays a
tool tip.
The symbols can be inserted (by drag&drop) into the drawing sheet. Rotating and
resizing is not possible. After inserting, the right area displays the property window of the
new action element.

Action Symbols of the Routine Generator

Starting point of the routine. Must be used exactly once.

End point of the routine. Must be used exactly once.

Connection between two actions. Determines the order of execution.

Compares two values - results of an action or user input - using predefined
operators. the comparison result yes/no determines the execution of one of two
paths in the diagram.

Establish contact to an ECU.

Close contact to an ECU.

Execute a diagnostic service. The result of the service is stored for later usage.

Read several measurement data.

read data from a VSG or MWG file..

Page 130

Read the ID-Block of an ECU.

Read the Diagnostic Trouble Codes of an ECU.

Clear ther DTCs of an ECU.

Open an edit window. The entered text is stored for further usage in the routine.

Display a message box with a user defined message.

Opens a text file and stores its content for further usage.

Opens a message box and requests the user to kane a decision. The result
yes/no is stored for further usage.

Stops execution for a defined delay.

Creates a time stamp. The value in ms is stored for later usage.

Output some text into a file or the status window.

Opens a text file, reads and stores its content for further usage.

Defines a variable with value 0. To change the value, an assignment must be
used. The value is stored for later usage.

Assigns a value to a variable

Filters a text by a regular expression. The filter result is stored for later usage.

Executes another routine.

The frame of any action symbol has a special meaning:

• Rectangle means action to be executed

• Diamond means a decision (yes/no)

Page 131

• Trapeze means displaying a dialog window

• Start / end of a routine

Drawing Sheet (central area):

In this area action symbols can be inserted, connected, reordered and edited. The raster
can be switched on and off. If the content exceeds the window, a scrollbar allows to move
it.

The Action symbols

Frame: rectangle, diamond, trapeze or
circle
Identifier: every action element gets
automatically a unique ID
Symbol: the action icon .shown in the
upper part of the area
Description: the description text can be
edited in the property window

Property Window (right area):

When a symbol in the drawing sheet is selected, the properties of the element can be set
in the property area on the right side. There you can change p.e. the description, logging,
output or input.
When no action symbol is selected, the properties of the sequence are displayed.

Important: There are two types of routines: protected and unprotected. The type can be
chosen in the Save As window.

Unprotected:
The routine is saved in a normal XML document file. It can be read, edited and stored by
any user.

Protected:
The routine is saved in an encrypted XML document file with a CRC sum. A password
can be set. The routine can be protected against reading or writing (editing).

Validation

Page 132

During editing and after loading the routine is validated. The result is visualized
graphically.

• Routine is valid
o the action symbols are grey. In the property window all connections have

green OK-symbols.
• Routine is not valid

o erroneous action elements have a red background. In the property window
a red cross marks which property is not correct. Input fields with red
background are obligatory.

Routine valid

Page 133

Routine not valid

Automatic Validation

Automatic validation after every change can be switched on or off in options

(button in the toolbar)

Manual Validation

When automatic validation is switched off, it can be performed manually by clicking on

the button in the toolbar.

Property Window - Using the Return Values Of Other Actions

Page 134

Depending on the focused action symbol in the drawing sheet, the property window
contains context sensitive input fields. Here you can use the results of other actions or let
the user input values manually at runtime.

In any actions, where the result of other
actions might be necessary, a list box
allows to choose out of all available
results. A selection of one of the results
overwrites the content of the text field.
When a result is chosen, the field cannot
be edited manually. It can be changed
only by selecting another result from the
list box.

The button deletes the content of the
text field and allows entering values
manually.

Saving the Results

During the runtime, all performed actions can be logged into a file and/or in console. By
default, both options are set. They can be changed in the property window of every
action.

Write to file:
setting this option causes the actions to be
logged into a file. The default path of the file
is the directory of the sequence file. The file
name consists of the file name of the sequence
with a time stamp, and the extension LOG.
In the property window of the routine, the
options for the log file path can be changed. At
the end of the routine execution, a file open
dialog appears requesting the user tho choose a
path and file name.

Write to screen:
Setting this option causes all log information
be displayed in the status window of Ecoute.

Changing the default log file path:

Log file path:
To overwrite the default log file path name,
open the routine's property window (click on an
empty area of the drawing sheet). Selecting the

Page 135

option "User input for log file path" causes an
opening of a file dialog after executing
the routine. In this dialog the user can choose
the path to save the output log.
Open a console:
The option "Open console during execution" in
the routine's properties causes a separate log
window to be opened for log output.

Configuration Of The Routine Generator

Clicking the button "routine generator options" in the toolbar opens a window with
several options. Especially the button "Configure action symbols" allows to re-sort,
display or hide the action symbols.
The other option names are self-explaining.

Page 136

2.4.4.19 Standard Objects

Standard objects (e.g., unlock) are often referred to as aliases because they reference
another service (e.g., depending on the ECU, the standard object Unlock is followed by
the DiagJob DJ_Entriegeln or the service FN_Zugriffsberechtigung) and give this
service a common name. This makes it possible to give services with the same functional
content the same name, despite different names in the DIOGENES data. Standard objects
are available on two different levels. In one case there are system specific standard
objects under the ECU system. These standard objects generally affect multiple ECUs. In
the other case, independent standard objects can be defined in the Vediamo system
configuration for individual ECUs.

Standard objects receive special treatment in Ecoute. For each object entered in the
subdirectory Name, a menu entry is generated in the menu Name. If no menu with this
name exists, it is created. This makes it possible to customize the Ecoute interface using
standard objects and assort frequently used services (including Java routines) in their own
group.

To execute a standard object, either start it from the selection window (double-click or
<ENTER> or select the corresponding menu entry.

Important:
To create a menu entry with an underlined character (hotkey), an "&" must
precede the letter in the name. If you enter a standard object "&Special" in the
directory "&Errors" in the system file (more on this in the System Configuration
section), the additional item Special which reacts to the "S" key is displayed in the
Ecoute Error menu. If the "&" is not included, a second menu named Errors
(without an underline) is created and the entry Special has no hotkey.

2.4.4.18 Display Trace and Monitoring Data

The function Extras / Trace window allows ECU-related communication information
with the respective ECU to be displayed in a separate window. The display can be
stopped or started again. The displayed information is stored automatically in a logfile.
If multiple ECUs are available, the appropriate ECU must be selected after the function
has been selected. The communication information for this ECU is displayed in the
following window and format:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Diogenes�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�

Page 137

The window is closed by using the button Cancel.
The button Trace can stop or start the output display. When Trace is activated, the button
is displayed as pressed in. When the trace is stopped, the button pops up again.
The complete contents of the window can be deleted with the button Clear.
The key combination CTRL+C copies any text selected in the window to the clipboard
for further processing.
The output is automatically written to a file named <ECU>Trace.log (<ECU> is the
name of the ECU, e.g., ME20). Any new information is appended to the end of this file.

Channel Monitoring

This function allows a trace window to be displayed for any available CAESAR
connection. Ecoute/Vediamo is in "listen only" mode regarding the ongoing
communication in this case, i.e., no data is sent to the ECU.

The data is always displayed in the format "Bytes & Timing".

After starting the function the CAESAR protocol, the connection and if a CAN protocol
should be used the baud rate must be specified.

Important:

Page 138

Channel monitoring requires a CAESAR resource. If, e.g., K-line 1 is used, this
resource is not available for normal diagnosis until the monitoring dialog is
closed.

2.4.4.20 Manual Command Input

Manual command input is opened using the menu entry ECU / Manual Command Input.

The individual components of the manual command input interface:

Input/output field Request message (hexadecimal)

• Input messages:
Enter the message to be sent in hexadecimal form (byte values).You can
store messages in a VND (see: add to list). In addition, the preceding
messages are available.

• Display of defined messages:
If you have loaded a VND, the bytes of the message selected in the
Defined request messages list are displayed here.

Input/output field Message name

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFil�

Page 139

• Input messages: Input a name for the message defined in the Request
Message input field.

• Display of defined messages: If you have loaded a VND the name of the
message selected in the Defined request messages list are displayed here.

Option Input payload only
The option Input payload only specifies how the input of the input line should be
treated - either a message with the entered content is sent or a protocol compliant
message is created first and the entered bytes are contained as the payload.

Option Display payload only
The option Display payload only specifies, how the contents of the received
messages should be displayed - either only the payload, or the complete messages
including header and checksum.

Option Send cyclic
The option Send cyclic specifies, whether the sent request message should be
automatically resent after the (last) reply from the ECU or not.

Button Send
Request message can be sent to the ECU using the Send button. During reception
or cyclical sending and receiving, the Send button has the label and function
Cancel. Response message series with which the ECU reacts to some requests can
be terminated with this button. After the last message (or the termination of the
reply series), the button regains its original label and function.

Button Add to list
The button Add to list can be used to insert new defined messages in the VND.Put
in the request message first and then the corresponding message name.

Button Delete from list
Use Delete from list to delete the message selected in the Defined request
messages list. If you subsequently store the VND, the deleted message is
permanently removed from the VND.

Output field Sent and received messages
All communication telegrams are displayed in the output field Sent and received
messages. The output is dependent on the setting of the option Display payload
only.

Output field Defined request messages.
This output field Defined request messages displays the currently defined request
message.

Button Select ECU
If the opened system has more than one ECU, the ECU to be contacted can
selected using the Select ECU button (see Establishing contact for an opened
system). For unopened systems, this button opens an ECU parameter input dialog
in which the protocol and ECU address can be entered (see Establishing contact
without an opened system)

Button Load VND
Use this button to load a VND.

Page 140

Button Establish contact
The button Establish contact controls the contact to the ECU and shows the
current communication status. The button has two states:
Establish contact
ECU is not initialized. Use the button to establish contact.
End Contact
ECU is initialized. Use the button to end the contact.

Button Comm parameters
Protocol-specific communication parameters can be set using the Comm
parameters button.

Button Save VND
After pressing Save VND, a Save file as dialog opens. Select an appropriate
directory for your VND and store it under the filename of your choice.

Option Monitor
Turn the monitoring trace on the diagnostic server on and off with this option.

Button Close
End the manual command input with Close. The state of contact with the ECU
before the window was opened will be restored when closing the window.

Manual command input can be opened independent of having a system loaded or not.
The processes for establishing contact differ, however. The two cases are therefore
described separately in the following.

Manual Command Input, Establish ECU Contact with an Opened System

• If only one ECU is available in the system, contact can be established using the
Establish contact button.

• If multiple ECUs are available in the system, use the Select ECU button. The
Select ECU dialog opens. Select the ECU which you like to contact. Then press
the Establish contact button.

• Once contact with the ECU is established, the label on the button changes to End
contact. In addition, the message Contact to ECU <ECU name>
established. appears in the status window.

• If contact to the ECU cannot be established, the label on the button remains
Establish contact. In addition an error message is displayed in the status window
(e.g. ECU cannot be initialized (activation failed). Reason:
ComCoordinator: 02005: Timeout P2) .

Important:
With an opened system, the communication parameters (ComParameter) from the
corresponding CAESER / DIOGENES data (CBF file and GBF file) are used, i.e.,
usually no communications parameters need to be set in order to establish contact.

Page 141

Manual Command Input, Establish ECU Contact without an Opened System

If no system is opened and you want to establish communication with an ECU, there are
two different cases:

1. VND available:
o Press the Load VND button. Select the desired VND using the Open file

dialog.
o Select the connection
o Press the Establish contact button.
o Once contact with the ECU is established, the label on the button changes

to End contact.
o If the contact to the ECU cannot be established, the label on the button

remains Establish contact. In addition, an error message is displayed in the
status window (e.g. ECU cannot be initialized (activation
failed). Reason: ComCoordinator: 02005: Timeout P2) .

2. VND not available:
o Press Select ECU and select a protocol. A dialog window is displayed in

which protocol-specific communication parameters can be set
o Enter the values for the displayed communication parameters and click

OK
o Press the Establish contact button.
o Once contact with the ECU is established, the label on the button changes

to End contact.
o If the contact to the ECU cannot be established, the label on the button

remains Establish contact. In addition, an error message is displayed in the
status window (e.g. ECU cannot be initialized (activation
failed). Reason: ComCoordinator: 02005: Timeout P2) .

o Store your settings in a VND.

Manual Command Input, Enter Communication Parameters

Pressing the Comm parameters button opens the Communication parameters dialog.

This dialog lists all the valid communication parameters for the ECU. The names of the
individual communication parameters are shown in the list Parameter names.
To change the value of a communication parameter, proceed as follows:

• Select the communication parameter to be changed in the Parameter name list.
The entry field now shows the current value of the communication parameter.

• Change the value of the communication parameter to the desired value (decimal).
• Press the Set button. The communication parameter is set to the value you have

specified.

Page 142

The button Default sets all communication parameters back to their default values. The
default values are those which were set when contact has been established (successfully)
the first time or the values read from the GBF file if no contact has been established with
the ECU yet. Example:

Initialization communication parameter ME20: KLINE protocol
CP_TRIGADDRESS = 1
CP_RESPSOURCEBYTE = 1
CP_RESPONSEMASTER = 1
CP_REQTARGETBYTE = 1

Example:
Initialization communication parameter CR3: CAN protocol

CP_REQUEST_CANIDENTIFIER = 2016
CP_RESPONSE_CANIDENTIFIER = 2024
CP_BAUDRATE = 500000

Manual Command Input, load VND

A VND (Vediamo-Nachrichten-Datei = Vediamo message file) serves to store ECU and
communication parameters required for establishing contact with an ECU, as well as a
list of frequently used messages and names.
If such a file is available, it can be loaded using the Load VND button. A standard Open
File dialog opens and all files ending with VND are displayed.
After selecting the VND, the IDs of the messages it contains are displayed in the Defined
request messages list.
When working with an ECU selected from the system (with a VSB file loaded), the
parameters contained in the VND file are ignored; if no system is open, the ECU and
communication parameters are set to the values contained in the file.
The next time manual command input is opened, the VND file used last is automatically
opened.

Save VND Files

A VND file with the current ECU and communication parameters as well as the defined
request messages is saved when the Save VND button is pressed (after entering the
filename in a standard file dialog).
If messages and/or parameters have been changed, the user is offered tosave the changes
in a VND file while closing the Manual input entry dialog.

Define Messages

The user has the possibility to enter the contents of a message to be sent in hexadecimal
format (input line Request message). He has the choice between entering a complete

Page 143

message and only entering the payload (option Enter payload only). A name for the
message can be input in the Message name line (any text). Pressing the Add to list button
copies this message to the list of defined messages (only names are displayed in the
Defined request messages list box). A defined message can also be modified (by renewed
entering) or removed from the lsit (by pressing the button Delete from list).
The defined message can subsequently be stored in a VND file.

Send Messages to the ECU

Messages can be sent to the ECU a number of different ways. As a rule: When the button
Send is pressed, the message shown in the input line is sent.

The message in the input line can be either:

• put in directly
• selected from the history of the input line
• or selected from the list of defined messages (in this case the selected message is

copied to the input line).

The Send button is the dialog's default button. This means that it can be activated not only
by pressing it directly, but also by hitting the return key or by double-clicking an entry in
the list of defined messages.
If only payload bytes rather than the complete message have been entered, the program
creates a complete message from the payload with the correct checksum byte to send to
the ECU.
An entry with the sent message then appears in the windows Sent and received messages.
When the ECU responds to the message, this/these message(s) are also displayed. The
User has the choice whether complete messages or only payloads are displayed.

VND Files

Vediamo message files contain information for manual command input. They are editable
ASCII files. The structure of the files corresponds approximately to that of an INI file.
Comment lines are possible, beginning with "//" to the end of the line. Spaces are
ignored. Since the parameters are ECU specific, the file is only suited for ECUs of the
same type.

The files consist of three section:

• ECU parameters
o Communication protocol
o ECU address

• Initialization communication parameters
o Communication parameters required by CAESAR in order to establish the

communication with the ECU (e.g., CP_TRIGADRESS)

Page 144

• Message definitions.
o Request telegrams and their IDs (e.g., read ID = 3C 00)
o The message ID is listed first in line, than an "=" and the hexadecimal

payload, separated by blanks. If the bytes are in parentheses, the bytes are
to be interpreted as a complete message, otherwise they are to be
consisered as a payload.

Example for ECU Parameters

Example:
[ECU]
Protocol = KW2000P
Address = 01

The parameter "Pin" becomes decimal and "Protocol" is specified as a keyword.
"Address" and other communication parameters are entered in hexadecimal.

Example for Initialization Communcation Parameter:

Example:
[COMMUNICATION]
CP_REQTARGETBYTE=69
CP_RESPONSEMASTER=69
CP_RESPSOURCEBYTE=69
CP_TRIGADDRESS=69

Example for Message Definitions

Example:
[MESSAGES]
Read ID = 3C 00
Read error = (81 01 F3 1A 8F)

Expert System

Manual command input gives the user the capability to submit any requests to the ECU
directly on the byButton "Send / Stop sending": This button has two states. When clicked,
it becomes and stays pressed, the messages are cyclically sent. Clicking it again changes
the state to de-pressed and stops sending. Button "Close": If any messages or parameters
have been changed, the user is requested to save the contents in a VRS file.

For loaded systems, it is also possible to pull any desired service from the tree view per
drag and drop to the manual command input window.

The request stored in the diagnostic parameterization of the selected service is then
displayed in the manual command input. The qualifier of a deposited service is entered in

Page 145

the field Message name, the request message in hex format (if it can be determined) is
entered in the field Request message.

If the service is deposited in the list field Defined request messages, it is also
automatically added to the list of pre-defined messages.

The user has the possibility to change or manipulate individual bytes before submitting
the request, and therefore can perform specific tests with the ECU.

In addition, any hex byte sequence can be entered in the Request message field using
copy & paste (e.g., out of the editor).

2.4.4.21 CAN Bus Simulation
This function allows to simulate CAN messages of ECUs not attached to the network.
This is needed for testing ECU functions expecting special mesages from other ECUs
without the need to have a model of the complete network.

The function can be activated with the menu item ECU / CAN Bus Simnulation. A
window opens in which the following parameters can be set:

• CAN-ID (Hexadecimal)
• Message to be sent (Hex) - either 11 or 29 bit long
• Time interval in ms
• Ressource
• Message counter
• CRC checksum

Page 146

Parameter "CAN-ID":
Setting the length of the CAN ID to 11 or 29 bit. Default is 11 bit.

Parameter "Ressource":
The list box contains currently available CAN ressources:

• HSCAN: BS_GENERIC_BUS.CANHS
• LSCAN: BS_GENERIC_BUS.CANLS

The first one is used by default.

Parameter "Message Name":
Name of message that can be defined by user.
Parameter "CAN-ID in Hex":
Enter the hexadecimal CAN-ID here.

Parameter "CAN-Message in Hex":
Enter the hexadecimal CAN message here. The length is limited to 8 byte (64 bit
payload).

Parameter "Interval":
Enter the time interval (in ms) in which the message should be repeated. Change the
initial value of 0 to a positive number before pressing the "Send" button. Changing of the
interval while sending is active, is not possible.

Page 147

Checkbox and Button "MC/CRC and Options MC/CRC":
This feature enables the generation of a message counter and / or a checksum for the
related CAN message. The "options" button displays a dialog where the necessary
parameters can be configured: For the CRC, the area must be specified for which the
CRC should be calculated, an the byte position where the CRC will be stored in the CAN
message. For the messagecounter, the bit position and it's length in bits must be entered.
Already specified parameters are displayed in the related list entry. If a parameter is
omitted / remains empty, the related function (MC bzw. CRC) will not be activated.

Button "change":
By use of the button "change" the change message entry into the list of messages to be
sent. Button "add":
Use this button to add the edited message entry into the list of messages to be sent.
Depending on hardware used, up to 10 independent messages can be configured and
simulated.

Page 148

Button "remove":
Use this button or the "delete" key to remove the selected entry from the list of messages.

Button "Send / Stop sending":
This button has two states. When clicked, it becomes and stays pressed, the messages are
cyclically sent. Clicking it again changes the state to de-pressed and stops sending.

Button "Close":
If any messages or parameters have been changed, the user is requested to save the
contents in a VRS file.

Button "Save":
The full configuration can be saved in a *.vrs (Vediamo Rest bus Simulation). A "file
save" dialog will appear requesting to select path and file name. The default file name is
...\VediamoDaten\yyyy-mm-tt_[Corrent/last system].vrs
To use this file, load it by menu item "ECU / Load CAN bus simulation".

Trace Analysis:
After setting or loading the configuration and starting sending, the trace window shows
the data flow as single bytes with a time stamp. The window content cannot be saved.
The toggle button "Start/Stop monitoring" is used to activate/deactivate monitoring.
The button "Reset window" clears the content of the monitoring window.
For a better readability, use the checkbox "filter CAN-ID" to display only messages of the
simulated ECUs.

Important:
The CAN bus simulation is an extension to standard communication functionality.
Therefore not all communication hardware supports this feature.

Especially the eCOM (PDUAPI) does not support CAN bus simulation.

2.4.4.22 Snapshot File Storage

Snapshots of the error, actuator and measurement windows can be stored in a file by
pressing the button Save or the key combination CTRL + F2. A dialog appears when
Save is pressed in which the user can enter data, comments and the name of the snapshot
file. A recommended name for the file appears in the dialog. This name can be accepted
or changed. (Button ... directly next to the input field Snapshot file).
The default file format of the snapshot file is HTML. Snapshot files can be logged either
in HTML or in text format. The choice is made using the file extension. The "htm" or
"html" endings determine HTML format. In all other cases a pure text file is saved.

All snapshots to be saved are stored with the ID block entries in the snapshot file. The
snapshots can be attached to already existing files. The last used snapshot file is
displayed when the dialog is opened. The snapshot can be written into the file by
acknowledging with OK.

Page 149

The following information is stored in the file when it is saved for the first time:

• Version, e.g. Ecoute version 05.00.00
• System name
• ID block
• CBF version
• User data (to be filled out by user)
• Comments

The ID blocks of all ECUs available in the system contacted during a session are saved.
If no communication exists as the target file is selected, the ID blocks are saved when
communication is established. If a communication is terminated and re-established, a
check is made during communication is being established whether the ECU ID block is
already included in the file. in that case this ID block is not saved. Otherwise this ID
block is written into the file (ECU swap).

If the target path has already been set, the error, actuator and measurement window
snapshots can be stored in the file using CTRL + F2. No comments or user data can be
entered in this case.

2.4.4.23 Simulation of ECU Communication

Communication with ECUs can be simulated in Vediamo without actual physical contact
to an ECU.

Simulation Modes

Simulation mode in the server can have three different stats:

State Mode Description

Normal 0 Normal state, communication with a physically present ECU,
default setting.

Simulation 1 ECU communication is simulated.
Record
simulation data 2 Communication with the physically present ECU is recorded in

order to play it back in simulation mode.

The states are controlled using an entry in the Vediamo.ini file:

[Server]
Simulation=<Mode>

This Vediamo.ini entry becomes effective after the server starts or after a server reset
with subsequent re-initialization. The entry can be changed permanently in Vediamo.ini
using the INI Editor. You can also start Ecoute with simulation option in the Start Center.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�

Page 150

Remember however that the simulation mode concerns the server itself, not a single
client. Therefore it is not possible to work in simulation mode with one client when
another client already started without simulation.

In simulation mode, Vediamo can be used without any CAESAR hardware. No password
is requested when starting the server in simulation mode and the CAESAR hardware ID
is checked.

The CAESAR communication API is not called in the simulation. API-I calls (Ecoute:
manual command input), reception of monitoring data (Trace), as well as editing COM
parameters are therefore not possible.

Each client can check whether the system is in simulation mode. This state is clearly
displayed in Ecoute and in the machine operator by the text "SIMULATION" in the title
of the main window.

The service filters described in the system description will function without modification
in simulation mode.

Recording Simulation Data

A mechanism is implemented for recording the ECU behavior during regular diagnosis
and playing it back during simulation.
SIM data recording is activated by the Vediamo.ini entry [Server] Simulation=2
when the server is started or re-initialized.
The recorded data is stored in the appropriate SIM files in the system directory.

The following data is recorded:

• ECU
• Last variant
• Services
• Qualifier, Result

If a service is executed numerous times, the sequence of the up to 10 last
occurring results are recorded.

• Errors
The P-codes of the errors from the last "Read errors" process and their
environment data (if read errors with environmental data is activated) are
recorded.

SIM files which are not (yet) available are generated during SIM data recording. Already
existing files are updated.
The recorded data is written into the affected SIM files at the latest when the current
system is closed.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayTrace�

Page 151

It cannot be ruled out that the performance of Vediamo is negatively affected by
recording mode.

Simulation Data

The simulation data is stored in easy to edit text files for which the following applies:

• There is one SIM file per ECU in the system directory. If a system description
contains multiple ECUs with the same name, these use the same file. The name of
the file is formed from the ECU qualifier and the extension ".Sim", e.g
"ME28.Sim". It is not possible to select or modify the filename or the file from the
client. Changes can only be made by copying, shifting, editing etc. directly in
Windows. The file is read anew with each ECU:Init() by the server.

• All required data such as names, descriptions, dimensions and value limits, etc.,
not contained in the SIM file are taken as possible from the available
parameterization.

ECU Settings

The following functions are simulated:

• ECU: Init() and Exit()
• The variant entered in the SIM file is used. If no SIM file is available, the default

values of the basic variant are used. The function GetIDBlock() returns only the
block ID. A menu with the functions relating to the ECU is displayed by clicking
on the ECU entry in the system tree in Ecoute. In simulation mode, this menu is
expanded to include the function Select variant. This menu entry is displayed only
in simulation mode. Executing the function in simulation mode causes a dialog
with a selection of all the ECU's parameterized variants to be displayed. After a
variant has been selected, it is activated internally in the Vediamo server for
simulation. The system tree is updated accordingly.

Entries in the SIM file (Example):

Example:
[General]
Version=1

SIM file version
;ECU=CRV

Comment, for information only. The ECU is determined by the name of the SIM
file.

Variant=C47
Variant to be simulated. Default: empty= basic variant

Error="TimeOut P2"

Page 152

Default: empty. If a value is entered here, if establishing contact in the simulation
fails, the entered value is returned as error.

ECUInitDelay=100
Delay in ms required to establish contact in the simulation. Default=0.

ReadAllErrorsDelay = 500
Delay in ms of a simulated "Read errors" operation. Default=200.

ServiceExecutionDelay = 0
Delay in ms of a simulated "Execute service" operation. Default=200.

Results from Diagnostic Services

When a service is executed, the value specified in the SIM file is returned as the result. If
no value is specified in the SIM file, "?" is returned. It is also possible to specify a list of
values separated by commas in the SIM file. In this case, the values are returned
sequentially, the first value for the first call, the second value for the second call, and so
on. When the last value in the list has been reached, the subsequent call returns the first
value again.

If a preparation is entered in the Ecoute dialog, it is checked for validity but has no
influence on the result of the execution.

The dimension of the result can be taken from the parameterization.

The relation between set value and a possibly available OutputRef is not simulated. The
corresponding entry in the SIM file applies to the simulation of presentations of

• general services
• measurements
• actuator and adjustment states
• functions

The entries for all of these Vediamo classes are identical in the SIM file.

Entries: An entry in the SIM file is provided for each service to be simulated.
Example:
[DT_01_Oeltemp]

Service entry.
Value=85.0

Single value.
...
[_S_DT_01_Bordspannung]

Next service entry.
Value=12.4,12.3,12.8,13.4

List of values.
...

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#OutputRef�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Presentation�

Page 153

Read Errors

Read errors returns the P-codes specified in the SIM file and if applicable, the list of
environment data with the values entered in the SIM file. If no SIM file is available or the
SIM file contains no information on errors, no errors and no environment data is returned.

Example:
[P0110]

Error entry. (P code)

EESActive=1
Default=0.

EESStored=1
Default=0.

EESMIL=0
Default=0.

;All entries with a semicolon are comments
Comments can be used for structuring and explaining

ENV_Drehzahl =0.0
Environment data-qualifier and value.

ENV_MotorTemp=-40.0
Environment data-qualifier and value.

...
[_E_P1605]

Next error entry...
...

Variant Coding

The simulation uses the "offline varcoding" provided by the CAESAR API. Coding
services and fragments are shown. Simulated reading and coding of fragment values is
only possible within the framework of the CAESAR API. An appropriate
parameterization must be available. In addition, CAESAR hardware with the
corresponding access level must be connected.

Flashing

Flash processes cannot be simulated.

2.4.4.24 Clamp 15 Handling
Since the omission of clamp 15 as pin in the OBD socket, as a replacement the state of
the ignition switch is available as signal on the diagnosis CAN. CAESAR is able to
evaluate this signal, must however be configured accordingly. Refer to CAESAR
documentation concerning clamp 15 omission for further information.

Page 154

In Vediamo this configuration can be already made system related in the system
description, but a system description-independent standard attitude is also available.
There is a INI file, which contains the configuration of the clamp-15-parameters
dependent on the model (file name: „Ignition.ini “). The Ini file islocated in the program
directory.

It contains model-dependent the following data:
- Recognition "automatic", over "hardware pin" or "from CAN"
 The selectable entries in the file read in such a way: AUTOMATIC, HARDWARE,
CAN
- File name clamp 15 CBF
- ECU name for clamp 15 recognition
- Variant (model-dependent)
- Ignition read service
- CAN wake up service

File contents example:

[Models]
NumberOfModels=3
Model1=BR211
Model2=BR220
Model3=BR203

[DEFAULT]
IgnitionMeasurement=HARDWARE
CBFFileName=
ECU=
Variant=
ReadIgnitionService=
CanWakeupService=

[BR211]
IgnitionMeasurement=AUTOMATIC
CBFFileName=Clamp15.cbf
ECU=CLAMP15
Variant=1_Bit_Auswertung
ReadIgnitionService=
CanWakeupService=

[BR220]
IgnitionMeasurement=CAN
CBFFileName=Clamp15.cbf
ECU=CLAMP15
Variant=2_Bit_Auswertung

Page 155

ReadIgnitionService=
CanWakeupService=

[BR203]
IgnitionMeasurement=HARDWARE
CBFFileName=
ECU=
Variant=
ReadIgnitionService=
CanWakeupService=

The "ReadIgnitionService" and "CanWakeupService" entries are for information only -
they are not used further.

In Ecoute, under the menu option "extras" there is a menu option "clamp 15 handling" for
adjusting the behavior of the ignition recognition depending to the related model.If the
menu
option is selected, a dialogue will be opened, in which the model can be selected. With
click on "OK" the configuration in accordance with selected model is set. The last set
configuration/model is stored into the Vediamo.ini and loaded and set with the next
Vediamo start again.
Key in Vediamo.ini:
[Servers]
...
IgnitionMeasurement=BR203

If a VSB contains a valid configuration (all information available), then the configuration
of the VSB will overwrite the currently selected configuration. Renewed setting of the
configuration by Ecoute/other Clients/test sequences is possible. If the model is set per
dialog in Ecoute, and the specified clamp 15 CBF does not exist (= is not in the list of
Caesar's currently used .CBFs), a warning is provided; the configuration is however
nevertheless set. Other Clients, as well as test sequences receive this information as
return value when setting the configuration.

2.4.5 The Ecoute Menus

System Menu

Select

Use this item to load the system description you want to work with. An already opened
system is closed in the process.

Close

Page 156

A system can be closed using the menu time System / Close. All windows which display
ECU relevant data (system, error, measurement, trace) are closed in the process.

Open OBD2

Opens a OBD2 connection. With this protocol diagnostic data can be read without the
need of special ECU dependant files. A special OBD2 window is opened.

Close OBD2

Closes the OBD2 connection and the OBD2 window.

Open session

A session file can be opened using the menu entry Open session. This is done with the
help of a file selection dialog which displays all files ending with .vsc.
Select the session to be opened with the help of this dialog. The active session file is
displayed in the title line.

Save session

Use the menu entry Save session to save the changes in a currently open Ecoute session
to the active session file.

Ecoute can be started with a specific session. The complete path of the session file must
be passed to the program via command line parameter. Optional the program can be
started automatically with the last stored session. Therefor the option load last session
must be activated in the options dialog .

Save session as

The menu entry Save session as allows an Ecoute session to be stored under a different
name. This is done using a file storage dialog. The filename and storage location can be
specified.

Close session

The menu entry Close session closes a session file. After this action, the selected system
and all open windows are closed. The main window is restored in accordance to the INI
file.

List of last used files (MRU list)

The names of the last four opened systems or session files are displayed in the System
menu. These files can be opened simply by clicking on them.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ConfigureEco�

Page 157

Exit Program

This item closes Ecoute. If no further Vediamo clients are active, the DiagServer is also
automatically ended.

ECU Menu

Init contact

Init contact starts the process to establish contact with the ECU. This can also be
achieved using the F3 function key, double-clicking on the ECU in the selection window,
or clicking on the ECU's button in the status line.

Exit contact

Ends communication with the ECU. Alternatively: F4 key, double-click in the selection
window, ECU's button in the status line.

Read ID block

This command (or using ALT-I) reads the ID data from the ECU. In case of multiple
ECUs, the ECU must be selected first. Contact has to be established with the ECU in
order to read the ID block.

Communication Parameters

Experienced users can change communication parameters using this menu entry.

Manual Command Input

This command activates a window for communicating with the ECU on a low level
(CAESAR-API-I). Byte level messages can be transmitted here replies can be analyzed.

Properties

This opens a window with the ECU properties.

CAN bus simulation

Simulating CAN messaages.

Load CAN bus simulation

Loading pre-configured CAN messages for simulation.

Page 158

Channel Monitoring

A trace window for any existing CAESAR connection can be displayed with this
function.

Error Menu

New error window

Opens a new error window, even if a window is open already. The window is filled with
the current error information.

Read errors

Opens a new or updates an already open error window.

Read permanent errors

Opens a new or updates an already open error window containing permanent errors.

Clear errors

Clears the error information in the ECU. If changes are visible during the next error
reading depends on the respective ECU.

Read, save and clear

To simplify frequently repeated actions, this function can perform three different
functions:

• Read errors
• Log read errors in a snapshot file
• Delete the errors in the ECU

Quick test

Performs a quick test. The error memory of all ECUs with which communication is
currently established (e.g. for a complete vehicle) is read/or cleared.

Read errors by Status

Reads all supported error codes (KW2000: "REQUEST SUPPORTED 2 BYTE HEX DTC AND
STATUS ($03)").
Protocol specific. Only meaningful for KW2000 and UDS.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayTrace�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ReadError�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ReadError�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ReadError�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/l#TheVediamoMo_Ecoute_TheEcouteFun_SystemQuickT�

Page 159

Service Group Menu

New service group

Opens a new service group window. It can be filled with services and stored as a service
group file (VSG)

Open service group

Opens a stored service group.

Open/Analyze Recorded Series

Loads a previously recorded series of measurements (VSR file).

Coding Menu

Variant coding

Opens a window for reading and setting the ECU variant. If entered correctly in the
system description file (VSB), the services which bring the ECU into the correct mode
(preconditions) are executed first. If this does not happen, the services can also be started
manually form the selection window.

Flash

Opens the window for flashing a specific firmware into the ECU.

Services Menu

Execute Routine

You can select and start a service from one of several groups or a Java routine. These
items are useful if you have to work without a system window.

This menu is also traditionally used to insert customized menu entrys with the help of
standard objects.

Extras Menu

Find

The function "find" can also be executed using the keyboard shortcut CTRL+F.
For the user, there are various ways to search for a text in vediamo related data:
- In the current system

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayMeasu�

Page 160

- In the Ecoute windows
- In files
"Searching in the current system" or "in the Ecoute windows" and "searching files" is
made in two different Windows, between the user can change using a tab button.

Searching in the current system

Input field for text to find:
The input field is identical with the field from searching in files. Entered keywords
appear in both windows. The input field offers a history containing the last used
keywords. A keyword can be pasted from the clipboard.

Search in current window

If "Search in current window" is selected, the next found result in the currently active
window will be selected and made visible. The related window will be searched up from
the beginning or up from the currently selected position.

Search in tree:
If "search in the system tree" is selected, the entire currently loaded system is searched at
once, and hits are added to the result list. The result list contains the qualifiers/names of
the services containing the wanted keyword. If the user clicks on a service in the result
list, the related entry in the system tree is selected. Services in the result list can be added
to a measurement window using drag and drop.

Searching in files

Input field for text to find:
The input field is identical with the field from searching in the current system. Entered
keywords appear in both windows. The input field offers a history containing the last
used keywords. A keyword can be pasted from the clipboard.
Input field for directory:
Specifies the directory that contains the files to be searched through. The default ist the
current system path.
Search in files:
Files with the selected extensions will be parsed.
Result list:
Files containing the specified keyword will be added to the result list. The list also shows
the file's pathname. If the user clicks on a file entry in the result list, the related file is
opened and displayed.

Options

Opens the window for editing the Ecoute and server options relevant for Ecoute.

Page 161

Flashdata Administration

Opens a dialog for handling flash files (see flash dialog).

Font

The font to be used in the measurement, actuator and error windows can be selected using
this menu entry.

Clear status window

This command clears all entries in the status window (output window).

Server Reset

The DiagServer is re-initialized. This is necessary if work should continue with modified
settings or an updated parameterization. The current Ecoute state (open system, opened
windows) is cached and restored after the reset.
In some situations (modifying certain settings which require a reset), the user is asked if
the server should be rebooted.

Clamp 15 Handling

Opens the window to select a model used for clamp 15 handling.

Show trace

Opens the trace window.

Macro

A sequence of Ecoute command can be stored here or a stored sequence can be played
back.

Config toolbar

This feature allows the toolbar to be adapted to individual needs. The configuration is
made in an own window:
On the left side, the as functions available toolbar buttons are listed, on the right side the
currently assigned toolbar buttons.

Using the "add" button, an entry selected on the left side can be added to the toolbar and
will then be listed on the right side, too.

Page 162

Similarly, using the "Remove" button an entry selected on the right side can be removed
from the toolbar.

The "Up" and "Down" buttons refer to the current contents of the toolbar and also on the
list on the right side. With their help, the currently selected entry in the list is moved up
or down, thus determining the the order in which the buttons appear on the toolbar
appear.

With the entry "Separator" anywhere a dividing line can be inserted, e.g. to make
individual functional groups to be drawn between them.

The toolbar can be docked at the top/bottom left/right side of the main window by
dragging it to the desired location.

Window Menu

Cascade, Tile Horizontally, Tile Vertically

These commands arrange the open windows.

Status

Opens or closes the status window (output window).

System window

Opens or closes the selection window (system window).

Routine manager

Opens or closes the window for controlling Java routines.

Macro Window

Opens or closes the window for monitoring a played-back macro.

Update current window

The content of the active error, actuator or measurement window can be updated using
this menu entry or the F5 function key. The key combination CTRL+F5 updates the
contents of all windows at once.

Show toolbar

Shows or hides the toolbar.

Page 163

"?" Menu

Help topics

Opens the online help.

About Ecoute

Displays Ecoute's "business card".

Keyboard Operation

Shows that part of the online help with all keyboard commands.

Additional information

For the ECOUTE user it is possible to provide own additional support informations in
.chm- and .PDF-files. Any time a new system is loaded, the following files are displayed:

° All .chm- and .PDF files located in the directory ..\Data\VediamoDaten\ are listed
below the "?" menu.

° All .chm- and .PDF files located in the directory ..\Data\VediamoDaten\ [current
system] are listed below the "?" menu.

° All these files are additionally located in a new folder in the system tree.

When selecting a file in the menu or by double clicking it's entry in the system tree, the
file will be opened and its contents showed...

2.4.6 Keyboard Operation

In the age of windows and the mouse, it is no longer taken for granted that a program can
be operated from the keyboard. But it is a significant convenience, e.g., during test drives,
that all important Ecoute functions can also be executed without a mouse. Exceptions are
the adjustment of window sizes and positions, and other functions which are rarely
required and then only in the preparation and configuration phase of test drives. Such
actions as reading errors, displaying a group of selected measurements, and much more,
can be started by only a few keystrokes. The specified hotkeys are based on the early
DOS diagnostic programs MODI and ISOSCAN.

The following tables contain a complete list of all Ecoute keyboard commands.

Key Action
F1 Online help
F3 Establish contact to the ECU

Page 164

F4 End contact to the ECU
F5 Update active window

F6 Open a new error window, if no error window has been
opened yet. If an error window exists, update the contents.

F7 Read all measurements
F8 Read all actuators
F9 Execute last macro
F10 Start quick test
F11 Open OBD2 window
F12 Manual command input
Alt+A Select system
Alt+B Delete status message
Alt+D Activate service menu
Alt+E Read once (e.g., measurements)
Alt+F Flash ECU
Alt+G Show properties of current service in tree control
Alt+I Read ID block
Alt+K Activate coding menu
Alt+J ECU properties
Alt+L Clear all errors
Alt+O Open session
Alt+P Save snapshot (e.g., error window)
Alt +Q Display trace
Alt+S Activate system menu
Alt+T Activate ECU menu
Alt+V Execute variant coding
Alt+Z Close system
Alt+F Activate error menu
Alt+M Activate measurement menu
Alt+R Activate actuator menu
Alt+N Activate windows menu
Alt-F4 Exit Ecoute
Alt+F6 Read permanent errors
Alt+F7 Open service group

Page 165

Alt+F8 Open actuator group
Alt+F9 Open macro selection list
Ctrl+F Find function
Ctrl+F5 Update all windows
Ctrl+F6 Read, save and clear errors
Crtl+F4 Close active service group, actuator group, error window
Ctrl+F7 Measurements: New group
Ctrl+F8 Actuators: New group
Ctrl+F9 Record macro
Ctrl+F10 Set standard system path
Ctrl+TAB Toggle between different windows
Schift+F6 Open a new error window
ESC Close active window
TAB Jump within the active window

Selection Window (System Window)

Key Action
Right arrow Expand entry
Left arrow Collapse entry
Arrow up Move up in selection window
Arrow down Move down in selection window

Enter

Start action:
ECU: Establish or end contact
Service, Java routine, etc.: Execute
Folder: Expand / collapse

Graphic Measurement Window

Key Action
Enter Start / Stop recording values
Blank (Space key) Start / Pause cyclic reading
Del Erase recorded values from memory

Cursor keys Select value point to be displayed (if any measurement values
have been read)

Page 166

2.5 Java Handler Functions

In Vediamo, it is possible to execute Java routines during a diagnostic session. Java
routines are Java programs which the user can write/edit himself and from within
Vediamo diagnostic server functions can be called. Therefor Vediamo provides an
interface realized by a number of Java classes.

2.5.1 Vediamo Java Interface
The VHandlers Java Interface Documentation (click for more...) describes all provided
Java classes for accessing the functionality of the DiagServer. These classes can be used
in own applications, developed in Java.

Depending on the Java interpreter used, there can be conflicts in connection with
Vediamo's own Java handler classes: Some Java development environments/interpreters
require the Vediamo's own Java handler classes in a named package, e.g., "JVHandlers".
The Java handler classes in Vediamo are therefor provided in two versions, once in an
unnamed package, and additionally in a package named "JVHandlers". The function of
both versions is absolutely identical. The VHandlers.dll module supports the unnamed
package as well as the JVHandlers package at the same time. The handler classes in the

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/JavaDoc/index.html�

Page 167

"unnamed" package and the additional handler classes in the "JVHandlers" package are
installed in separate archives in the ..\Java directory.

2.6 Java Programs (Java Routines)

2.6.1 Introduction

A programming capability is required to increase the effectiveness of frequently repeated
functions and actions. In earlier diagnostic systems (MODI, Isoscan) functional chains
programmed in an own Pascal dialect proved reliable. Many other programs have the
capability to record and play back macros, which resemble an own programming
language in extreme cases (e.g., Visual Basic in MS office applications).

In Vediamo, it is possible to program customized Java routines. The advantages of Java
are obvious:

• Java is a standardized and widespread programming language with sufficient
documentation in all languages. It is not necessary to learn a Vediamo-specific
language.

• Java Runtime is available at no cost for all major operating systems. No own
interpreter has to be developed for Vediamo nor are extensive testing efforts

Page 168

necessary, since a Java interpreter from Sun Microsystems already implemented
by millions is integrated directly in Vediamo.

• Java can not only address the Vediamo system functions, but all available
libraries as well. It is therefore possible to program stand-alone applications of
any given complexity, with windows, menus, graphics, etc., and to profit from the
simply accessed diagnostic functions of the Vediamo DiagServer.

2.6.2 Executing a Java routine from Ecoute or Another Client

Java routines were originally intended as an extension of the ECU parameterization, as a
type of additional DiagJobs. This allows, e.g., a sequence of specific diagnostic services
to be executed each time contact is established, or a specific action (actuator activation,
variant coding, ...) to be executed when starting up. For this reason, Java routines can be
added to the system description using the system configuration. These are visible and
accessible in the Ecoute selection window after the system is loaded. The routine
sequences are usually rather simple; they do not require their own interface and can
assume that a certain ECU is available or already contacted when they start.

These routines can be started in Ecoute by selecting and acknowledging (double-click
with mouse, <RETURN> on the keyboard) the entry in the selection window. Any
outputs from the program are displayed in the Ecoute output window.
If the routines are declared as initialization routines (initialization sequences), they are
executed at the correct instance in time without any assistance by the user.

Routines listed in the system description can be started in the PSR client using
the command "600". To communicate with the test bench controller, the Vediamo-Java
interface has a class JVPSR which can send messages to the PSR.

2.6.3 Java Program as Standalone Client

The power of Java and available libraries allows complete applications to be generated.
These applications do not need to be (and usually aren't) linked to a specific ECU. They
can execute, select systems, contact ECUs, receive and process data and much more
independently of all other Vediamo clients.

Such Java clients are usually generated as JAR files. They can be started in the following
manner:

General:
javaw -classpath <JavaKlassenPfad_1>;<JavaKlassenPfad_2>;...; <routine
name>
Example:
"C:\Program Files\Vediamo\JRE\bin\javaw" -classpath
"C:\ProgramData\Vediamo\VediamoDaten\AllgemeineScripte";"C:\Programme\V
ediamo\Java"; Classname.jar

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_PSRAdapter�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#PSRMessages�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�

Page 169

2.6.4 Example: Program, Compile and Execute a Simple Routine

Please use the example file from the attachment for your first programming attempts with
the Vediamo-Java interface. You need the free Java Development kit (the current version
is J2SE 5.0) from Sun Microsystems to write and compile Java programs. Alternatively,
you can use comprehensive development environments such as Borland's JBuilder. This
example is oriented primarily towards Java beginners, and it is assumed that J2SE or an
earlier version is installed.

Here is how you arrive at your first Java client for Vediamo:

• Store the contents of the example file as pure text in a file named Example.java.
Make certain that use of uppercase and lowercase letters is consistent: The name
of the Java file must be identical to the name of the class it contains ("Example"
in this case).

• In the definition section, change the qualifiers (IDs) of the ECU and services that
you wish to communicate with.
Use Ecoute to make contact with your ECU first and note the qualifiers of the
ECU and the services you want to address. The display in Ecoute (Extras /
Options / General / Display must be set to Qualifier (and not Name).

• Compile the source file to binary code.
The command line for this is:

javac -classpath <Path to the Vediamo handler classes>JVHandlersPackage.jar
<Path to Java source code> <Source code Name>.java

In our example, if your file is in C:\JavaTest\Quellen:

javac -classpath "C:\Programme\Vediamo\Java\JVHandlersPackage.jar"
C:\JavaTest\Quellen\Example.java

The system variable PATH must contain the path to the Java programs (to the
Java compiler javac.exe in this case). Alternatively, enter the complete path name
in the command line:

C:\Program Files\Java\jdk1.7.0_25\bin\javac -classpath
"C:\Programme\Vediamo\Java\JVHandlersPackage.jar"
C:\JavaTest\Quellen\Example.java

The compiled file has the same name and the extension .class: Example.class.
For practical purposes, this file should be located in the subdirectory of the system
for which the routine is valid. If the system file is named, e.g., CR4test.VSB, copy
the class file to the directory ...\VediamoDaten\CR4test.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#ExampleJavaR�
http://java.sun.com/�

Page 170

• Tie the routine into the correct system (which contains the ECU to be addressed).
Use the system configuration

• Start Ecoute

 to do this. Open the system, find the item routines
and click on it with the right mouse key. You can then find and select the class
file that was just generated. You can also add a description if desired, or leave the
description field empty.

• Load the named system
• Find the new routine in the system window and execute it by double-clicking it.

You will see in the "routine manager" window that the routine is active. The
window closes automatically when the routine has ended. The output from calling
client.Trace() results in text output in the Ecoute status window. If multiple clients
are active, the outputs occur in the client which started the routine

• Try other functions as well

The description of the Vediamo-Java interface contains a complete list of all
classes and their methods (class functions). The Sun Microsystems Java
homepage contains a complete description of the Java programming language.

2.6.5 Particulars

Aborting Java Routines

When a Java routine program is started from Ecoute, either directly or using a standard
object, this Java routine can be aborted using the Active routines dialog. The dialog is
displayed when at least one Java routine is executing and the option routine Manager is
activated. All currently executing Java routines started by the Ecoute client are displayed
in the dialog. The starting time of each Java routine is also displayed. To abort a Java
routine, select the corresponding line in the dialog and then click on the button Abort
routine. Initialization routines and Java routines which run as preconditions run in the
foreground of the Ecoute client and cannot be aborted.

Important:
An executing Java routine can only be aborted by the Vediamo system if the
routine regularly calls Vediamo handler functions. This fact should be taken into
account already when writing a Java routine.

Special features in the use of Java routines in .jar files:

Java routines can be run as a .class, as well as a .jar file. When running .jar files, a special
feature must be noted: If communication is desired between the Java routine and the
client that started the routine, e.g. via the JVClient.Information() function, the starting

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�
http://java.sun.com/�
http://java.sun.com/�

Page 171

client passes a unique identifier as the last command line parameter of the Java routine...
Communication is only enabled if this command line parameter is passed to the function
JVUtil.SetScriptIdentifier() (preferably immediately at the start of the routine in it's main
() method). Otherwise, the client can not be identified as the desired communication
target. When you run a .class file, the VHandlers framework does this work
automatically, when using a .jar file, your own Java program code must do it.

2.6.6 Configuration (INI Parameters)

The following values must be correctly entered in the configuration file Vediamo.ini for
Java routines to execute properly:

[INTERPRETER]
ClassPath - Paths and JAR files with the Vediamo-Java classes used
VHandlersLib - Path to the provided VHandlers.DLL
JavaInterpreter - Path to the Java interpreter

These entries are made by the Vediamo setup and only need to be modified by the user in
exceptional cases.

In addition, the entry

UseJVHandlersPackage=0

controls whether you want to use packages in customized Java programs (e.g., this is
obligatory in new versions of JBuilder).

2.7 BlackBox
2.7.1 Introduction

Even if they are not planned - unfortunately, crashes do happen. It is important to
determine the cause and to avoid it in the future. As in air travel, this is done with the
help of the BlackBox.
In this case it is a program which monitors the functions of the Vediamo modules
(servers and clients), by receiving entries from the applications on their current program
state. If a critical event occurs (server or client crash, loss of contact), the cached entries
are stored in a log file.

2.7.2 Structure and Function
The BlackBox can be cativated or deactivated by INI parameter "Run". After installation,
it is by default off. BlackBox runs unnoticed in the background. Its menus can be reached
using the icon in the taskbar. It has contact to all Vediamo applications (servers and
clients) by way of a DCOM interface. These pass their log entries to the BlackBox, which

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#DCOM�

Page 172

stores them in a ring buffer. Upon request from an application or the user (via taskbar
menu), the last available entries (up to 5000 lines, although this number can be changed
by INI parameter) are stored in a file.

2.7.3 BlackBox Functions

The following functions are accessible using the taskbar menu:

• Info about BlackBox. The info window displayed contains information on the
program version and configuration file.

• Log Viewer This starts a program which continuously displays the log entries.
• Save Log into File. If an irregular event occurs, the user can save the logs in order

to make them available to the developers for analysis.
• Shut up BlackBox. In exceptional cases, it could happen that BlackBox does not

end by itself (e.g., after an application has crashed). This menu entry ends
BlackBox and returns to a defined initial state.

2.7.4 BlackBoxViewer: Log Display at Runtime

The menu entry "Log Window" opens the following display:

Page 173

Most of this window's control elements are self-explanatory. The search string masks
deserve special mention.

• Search string for automatically saving log. Enter a text string here. As son as this
string is found in a log entry, all available entries up to that point are stored in the
log file.

Please note:
The search distinguishes between uppercase and lowercase.

• Filter for entries to be displayed: Here you can limit the display to a choice of the
information. If the option filter positive is active, only those entries which contain
the search string are shown. The filter affects only the display in the window, the
content of the potentially saved logfile in not impacted.

Note:

Page 174

Displaying during runtime noticeably burdens the CPU. Under certain
circumstances, this can result in a different sequence being displayed than if the
BlackBoxViewer was closed. For time-critical sequences therefore, it is
recommended to repeat the situation without the log window and to save the log
using the taskbar icon.

2.7.5 Linking to Other Applications

If you develop customized programs which run together with Vediamo, BlackBox can be
applied to them as well. To receive the description of the DCOM interface, please contact
the Vediamo team.

2.7.6 Configuration (INI Parameters)
This program has three parameters in Vediamo.ini.

• Run - BlackBox is active (1) or inactive (0)
• LineNum - the count of entries in the log file.
• It specifies the path and the string the logfile names start with. The full name is

constructed from this entry, supplemented by date and time.

Example:
[BLACKBOX]
Run=1
LineNum=5000
LOGFILE=D:\Data\Log\BlackBox

In this case a file can be named, e.g., BlackBox_03-11-2005_17-23.log. It
contains up to 5000 lines of log info.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#DCOM�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Introduction_OrderingLice�

Page 175

2.8 PSR Adapter

2.8.1 Introduction

In the following text the abbreviation PSR means test bench controller (=
Prüfstandrechner, PSR).

The PSR client is a utility program which gives the test bench controller access to the
DiagServers diagnostic functions. Its purpose is the adaptation of the complex Vediamo
interface to the communication with the test bench controller.

The PSR client is started by activating the Connect to Server command in the worker
client. The PSR client opens the interface to the PSR and activates the DiagServer. When
the worker client is ended (if more than one was active, then when the last

If no interface is needed, the PSR client can also be started directly by the test bench
software using DCOM calls.

 worker client
is ended) the PSR client is also ended and thus also the DiagServer (if no other clients
such as Ecoute or Java programs are active).

Page 176

In this case, the PSR adapter will be stopped by closing the test bench software.
Additionally to this standard way, PSR client can be also ended by a command (702)
from the PSR or from the taskbar menu (right mouse key click on the task icon).

2.8.2 Communication between Vediamo and PSR

The communication between PSR and the Vediamo DiagServer occurs in individual
messages through the PSR client. These message blocks can be transmitted in two ways:

• serial with protocol 3964R over the COMx interface
• over a network contact with HDLC over TCP/IP protocol

The contents of the message is identical in both cases.

The test bench controller (PSR) is the master and the PSR client is the slave. This means
that messages from the PSR have the meaning of commands which start, stop certain
actions or execute them once. The PSR client can receive commands at any time and in
variable order. Whether the commands have the desired effect depends on the system
state.

The PSR receives various information from the PSR client as a result of performed
actions and various events. Some messages from the PSR client can be attributed exactly
to one command (e.g., message 601 after command 600), others can occur in changing
quantities at various times (e.g., 301 during cyclic measurement reading). There are also
messages which are sent to the PSR without being requested. These are messages on
system errors as well as on changes in the system state (e.g., lost contact to the ECU).

The following rule applies to all messages:
Every message which should be sent by the PSR adapter is sent until reception by the
PSR has been acknowledged.
Exception: During cyclic measurement reading, unsent measurements are cleared from
the buffer, so that only the newest values are sent.

Behavior when Communication is Interrupted

No data is lost if communication with the PSR is interrupted. The PSR client initializes
the interface and sends all blocks contained in the buffer as soon as possible once contact
is established.

This leads to the PSR first receiving messages from the PSR client after contact is
established, e.g., in the case that the PSR was restarted while Vediamo is still in the test
run and has messages in the buffer.

For test bench systems where this behavior leads to problems (e.g., older test benches
from AT&T), the INI entry COMTIMEOUT can be set so that the test run is ended and the

Page 177

transmission buffer cleared when communication has a longer interrupt. A newly started
PSR then finds the PSR client in a defined state.

Message Block Structure

Length::
2 Bytes (HI, LO)

Time Stamp:
2 Bytes (HI,
LO)

Service
Number:
2 Bytes (HI,
LO)

Optional Data: 0 to 1018 Bytes
Word, String(s) or Combination

Length of block,
including length,
time stamp and
service number

Time elapsed
since
program start
in 1/10 sec

Unique
number that
starts a certain
action in the
DiagServer

Dependent on the service number.
Words are transmitted in the order (HI,
LO). Strings are zero-terminated
ASCIIZ strings

Each block from the PSR has the meaning of a command to the Diag Server. Replies
from the DiagServer (acknowledgements, data, information) are sent in individual blocks.
The transmission attempt is repeated until the recipient (the PSR) acknowledges
reception in accordance with protocol. Cyclically transmitted measurements are the
exception - they are sent only once.
The command blocks are transmitted to and from the PSR over 3964R / ASYNC or
HDLC / TCP/IP .
The following parameters need to be set in the PSR:

• 3964R / ASYNC:
o Prio=1 (i.e, in case of a simultaneous transmission, the PSR adapter

switches to receive and gives the PSR priority)
o COM interface: 19200,8,e,1
o Byte delay = 220 ms (time between bytes in the block)
o Ack delay = 550 ms (delay for an acknowledgement)
o Retries = 6 (the protocol makes a maximum 6 attempts to transmit each

block)
• HDLC / TCP/IP:

o IP Port = 2049 (other values over 1024 are possible)
o PSR Client = IP server - the PSR client is the first to open the socket
o Control computer = IP client - the PSR establishes contact with the

running PSR client first.

Note:
The values Byte Delay and Ack Delay may be exceeded but not under-run on the
receiver side. This means that the receiver should wait at least the specified time
for the byte. The sender must transmit in less than these times. Increasing the
value only increases the assurance of reception for a slow receiver, it does not

Page 178

affect the runtime since under normal circumstances the bytes or ACK are sent
with substantially shorter delay times.

2.8.3 The Functions of the PSR Clients

The PSR client provides most of Vediamo's functions which can be relevant in the test
facility. Everything necessary beyond that is programmed using Java routines and
integrated into the test run.
The individual functions are:

• Load and initialize data from the selected system.
• Establish and end contact with ECUs.
• Read errors with and without environment data. Single or cyclical until the

command ends.
• Read all or selected measurements. Single or cyclical.

Measurement reading is time-optimized. Numbers, and not IDs, are used for
referencing to reduce the amount of data. This is especially important for the
communication over 3964R, since the data throughput can be lower than between
Vediamo and the ECU.

• Execute services including actuators and adjustments (referencing using IDs).
Parameters are transmitted (if necessary), result is returned. Also applies to
measurements.

• Flashing the ECU.
• Sending and receiving API-1 messages to the ECU
• Execute Java Routines.

The Java interface has a Class JVPSR with functions to send messages to the test
bench directly from the Java code.

• Read various information from Vediamo:
o CAESAR version
o Identblock
o Defined measurements (that are filtered positively in the system

configuration)
o Lists of services
o Details on services
o ...

• Restart the DiagServer.
This is necessary, e.g. when CAESAR data is updated and has to be read in again
by the server. The PSR client remains active and contact to the PSR remains
intact.

Variant coding is not (yet) realizable directly with PSR commands but only with Java
routines.

The function principle of the test run is event control. This means that certain events
(e.g., a command from the PSR, loss of contact with the ECU) lead to actions which can

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/JavaDoc/JVHandlers/JVPSR.html�

Page 179

be longer or shorter and can change the state of the complete system. The PSR is notified
of every action in the PSR client. The sequence of the messages to the PSR can deviate
from the order the events (or commands) occurred, because the tasks are performed
partial in different parallel tasks.
It has to be considered in the PSR program that neither the order nor the time between the
messages needs to remain constant. Messages which relate to the same action are the
exception, e.g., the start of a Java routine and the end of a routine can never occur in
reversed order.

The following shows an example of a test run sequence.

Sender Code Parameter Explanation

PSR 3 "CR4_1" Load data of motor identifies in engine
table as "CR4_1".

Vediamo 5 "CR4psr"
Data of system "CR4psr" is loaded. The
engine table specifies which system
description belongs to which motor.

PSR 100 Establish contact to ECU.

Vediamo 101 "CR4"
Contact to ECU "CR4" is established.
The system must not be not be named
exactly like the ECU.

Vediamo 112

Initialization phase ended. It is possible
that other messages precede this one,
e.g., if an initialization routine is
exectued automatically.

Vediamo 201 "P0115","Temperature sensor
defective"

The ECU reports an error. This is
automatically read cyclically and
transmitted by Vediamo after contact is
established. If no errors are present,
only the message "End of error list" is
displayed.

Vediamo 201 "","" (2 empty strings) End of error list.

Vediamo 201
"P0115",
"Temperature sensor
defective"

Next error reading cycle. The errors are
read cyclically until this is ended by the
PSR.

Vediamo 201 "",""
PSR 204 Stop reading errors.
PSR 306 2,7 Read measurements 2 and 7 once

Vediamo 301 2,"Off" The result of measurement 2 is "Off".

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_PSRAdapter_TheEngineTab�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_PSRAdapter_TheEngineTab�

Page 180

Vediamo 301 7,"3250" The result of measurement 7 is 3250

PSR 500 "ACT_Drosselklappe","75" Set actuator "QACT_Drosselklappe" to
target value 75.

Vediamo 502 3,"ACT_Drosselklappe"
Error: Vediamo cannot activate the
actuator. (e.g. access privilege not
turned on)

PSR 550 "FN_Zugriffsberechtigung" Execute service

Vediamo 551 "FN_Zugriffsberechtigung",
"Access privilege granted" Service executed, result text is provided.

PSR 500 "ACT_Drosselklappe","75" Request actuator adjustment one more
time.

Vediamo 501 "ACT_Drosselklappe","75.2"
Actuator adjustment successful, new
value is 75.2 (value can vary slightly
because a float is converted to byte).

PSR 700 End test

Vediamo 102 "CR4" Contact to ECU closed.

Vediamo 701 Test run is complete.

To program your own test run, open the complete list of all messages which can be
transmitted between the PSR and Vediamo.

2.8.4 Configuration

Like other Vediamo programs, the PSR client also takes its settings from
the Vediamo.ini file. As with other Vediamo programs, the INI file is searched for in the
same directory the program is stored.

Usually, however, all Vediamo programs including the respective DLLs and INI files are
installed in the same directory, i.e., there is a common Vediamo.ini for all programs.

PSR relevant entries are made in the [PSR] section.

Key word Explanation

COMPORT

Connection used for communication between PSR and PSR adapter.
0 = no communication with PSR. Program inactive.
1 or 2 = 3964R protocol over COM1 or COM2. For higher values, an
I/O card with additional ports must be installed.
2049 = HDLC/TCP Communication over IP port 2049 (other values
over 1024 possible)

COMTIMEOUT Time in ms. If the communication with the PSR is interrupted for a longer period of

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#PSRMessages�

Page 181

time, a test run could be ended (contact with ECU discontinued) and all data deleted
from the transmission buffer.
0 means no timeout. The test run is continued once contact is reestablished, no
messages are deleted.
Default: 0

ENGINETABLE
Engine table: File which defines the motors (designates motor IDs -
system description + initialization routine + optional routine
parameters). This file is absolutely mandatory.

LOGFILE
File in which the data exchange between PSR and PSR client is logged
on byte level. Should only be activated when searching for errors,
under normal conditions this entry is empty.

Example:
COMPORT = 1
LOGFILE = "C:\Log\LUCA.LOG"
ENGINETABLE = C:\Vediamo\Systembeschreibungen\Engine.vet
Note:

In most cases, filenames can be entered in the INI file without quotes. Since the
LOGFILE entry is used by a program module from a third-party source, it is
necessary that the pathname, including the letter of the drive, be listed in quotes.

2.8.5 The Engine Table

The engine table specifies which engine is diagnosed with which dataset using which
ECU. The file structure is as follows:

• Lines which begin with ";" are comments and are ignored
• Every (other) line starts with the engine ID, followed by the system ID (VSB

name), optionally followed by the name of the initialization routine, possibly with
parameters. Blanks or TABs are used as separators.

• A blank line or end of file means end of table

For systems which include more than one ECU, the ECU to be used for testing can be
selected. This is done by specifying the ECU ID after the system ID, separated by a "/"
without blanks or TABs. If no ECU is specified, the first one found is considered
selected.
If the system contains multiple ECUs of the same type, their IDs are automatically
extended by a number in parentheses (e.g., ME20(1), ME20(2) etc.).

Example:
;This is a comment
;

Engine is named Aklasse, has an Sim4, we use the sim4serie.vsb. A Java routine
is executed at the start of the test run

Aklasse sim4serie Init.class

Page 182

;
Gas engine with ME2.0, without Java routine

Benziner me20
;

For diesel engines we have a system cr2cr3.vsb, in which a CR2 and a CR3 are
defined. Old and new diesel engines use the same system, but different ECUs and
are initialized by the Java routine, but with different parameters:

DieselAlt cr2cr3/CR2 InitDiesel.class alt
DieselNeu cr2cr3/CR3 InitDiesel.class neu
;

a system with two of the same ECUs. This makes sense, e.g., when two engines
use the same ECU, but different errors/measurement filters are applied

DieselMitSLP Diesel/CR2(1) Varcode.class slp

DieselOhne Diesel/CR2(2) Varcode.class ohne_slp

When does a system with multiple ECUs make sense?
The case that simultaneous contact to multiple ECUs is necessary to test an engine is very
rare. It can still make sense to use a system file with multiple ECUs. Especially if the
only a few different ECU types can be used alternating at the test bench. A system with
multiple ECUs requires more RAM at runtime but the loaded ECU data stays in memory
permanently. This has the following advantages:

• The starting phase of the test run (other than the first) is substantially shorter,
because the data does not have to be loaded (10-20 seconds, depending on the
amount of data).

• Memory is not fragmented. This effect can lead to the PC getting continually
slower and having to be rebooted after a few hundred test runs.

Use of such a system does not change anything regarding the test program. No changes
are necessary for the PSR. Merely the system file and the engine table must be
appropriately prepared.

2.8.6 Examples - how can I...

Test the functions of the PSRClient without the PSR

The test program PSRTerm.exe can be found in the Vediamo directory. It uses the same
communication interface as PSRClient and allows any messages which are usually sent
by the PSR to be entered manually and to receive the responses from Vediamo.
Note

This is a test tool that is made available without guarantee and without support.

Page 183

To work with PSRTerm, first start the PSRClient.
For a serial connection, the COM1 or COM2 interface of the computer on which PSRTerm is
running must be connected with the Vediamo computer interface entered in Vediamo.ini
by a null modem cable. This cable connects the pins GND, TX and RX of both ports, with TX
connected to RX, RX connected to TX, and GND connected to GND. Contact can then be
made to PSRClient by clicking on Open COM1 or Open COM2.

For a network connection, both computers have to be in the same network and capeable
of being connected using the specified port. A successful PING is sufficient, DCOM

Page 184

configuration, sharing, and releasing are not necessary. PSRClient can then be contacted
by entering the name of the Vediamo computer or its IP address under Server, and then
clicking on TCP/IP Client in the PSRTerm. Alternatively, PSRTerm can run on the same
computer as PSRClient. In this case the computer name is "localhost". The address of
your own computer is 127.0.0.1. If the connection cannot be established despite a
successful PING, please check the settings of your firewall (e.g., Windows firewall).

To re-establish an interrupted connection, always click on Close channel first and then
continue as above.

Test the PSR interface without starting Vediamo

PSRTerm is suited for this task as well. In this case, start PSRTerm first and activate the
connection with TCP/IP Server (for a network) or Open COMx (for a serial connection)
before the PSR establishes contact.

Attention!
With a serial 3964R connection, the connection might become blocked as soon as
both computers attempt to transmit a block at the same time. This is because both
the PSR and PSRTerm have the parameter PRIO set to 1. In normal PSR-
Vediamo operation this does not occur because PSRClient has PRIO=0.

Speed up measurement reading with DDLID

Measurements can be read much more efficiently and faster from the ECU with the help
of dynamically defined local IDs (DDLID). Another possible advantage is that the values
read in this manner are calculated at the same time. DDLID are therefore used
automatically for cyclic reading of measurements (command 302) if possible. The
commands and the data format are not affected, only the speed of execution changes.

To use DDLID in the PSR client, the following conditions must be met:

• The ECU supports DDLID for the selected measurements
• The code for DDLID is entered correctly in the system file (VSB)
• No other client is using DDLID with the same ECU

Shorten the test run's initialization phase

At the beginning of a test run, data is first loaded and initialized before contact can be
established to the ECU. In the process, all measurement services defined in the basic
ECU variant are initialized as software objects. After establishing contact and identifying
the ECU variant, Vediamo initializes all measurement values defined in the identified
variant.
Modern ECUs have up to several thousand measurement values which initialization,
depending on PC performance, can take 2 to 3 minutes. However, since only a few of

Page 185

these measurement values need to be measured in a test run, it makes sense to use the
system configuration in the system description (VSB) to filter out all unneeded
measurement values. This should be done for the basic variant (shortens initialization
phase prior to establishing contact) as well as for the variant used (shortens initialization
phase after contact has been established).
Filtering out other services (actuators, adjustments, etc.) does not influence the
initialization phase because these services, unlike the measurement values, are only
initialized in the PSR adapter when they are required.

As described above, the initialization phase for data (prior to establishing contact) can be
shortened substantially by implementing a system description with all required ECUs
rather than multiple system descriptions. This can save up to 10 seconds per engine
change. The PSR adapter does not reload the data if the required system description is
identical to the preceding one.

Monitor communication between the PSR adapter and the PSR

The worker client makes it possible to display and store the exchanged messages. This
allows the test process to be monitored.

If there are problems in the communication between test bench and PSR adapter, it can be
helpful to log the communication on a low level. Enter the name for the logfile in the INI
file.

Example:

[PSR]
LOGFILE=W:\LOG\Luca.LOG

The next time the PSR adapter runs, all actually transmitted and received bytes are stored
in the logfile. The following text box contains an example of a log file.

Example:

PSR Comm log file W:\LOG\Luca.LOG

Port: 2049
Date: 3.11.2005
Time: 9:4:19

-1721665.-634[01] hdlc->APPL 0000 00 0d 00 e0 00 03 73 69 6d 32 36 36
00 '...`..sim266.'

-1721665.-544[01] APPL->hdlc 0000 00 11 01 3e 00 32 53 69 6d 75 6c 61
74 69 6f 6e '...>.2Simulation'

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_PSRAdapter_TheEngineTab�

Page 186

-1721665.-544APPL->hdlc 0010 00 '.'
-1721654.-408[01] APPL->hdlc 0000 00 36 01 ac 00 32 46 45 48 4c 45 52
3a 20 46 65 '.6.,.2ERROR: Er'
-1721654.-408APPL->hdlc 0010 68 6c 65 72 3a 20 55 6e 67 fc 6c 74 69 67
65 72 'ror: Invalid'
-1721654.-408APPL->hdlc 0020 20 53 79 73 74 65 6d 6e 61 6d 65 20 53 49
4d 32 ' system name SIM2'
-1721654.-408APPL->hdlc 0030 36 36 70 73 72 00 '66psr.'
-1721645.-986[01] hdlc->APPL 0000 00 06 01 a4 04 4c '...$.L'
-1721645.-916[01] APPL->hdlc 0000 00 13 02 03 04 4d 43 52 33 20 63 72
33 5f 75 70 '.....MCR3 cr3_up'
-1721645.-916APPL->hdlc 0010 73 72 00 'sr.'

-1721614.-110[01] APPL->hdlc 0000 00 30 03 3e 00 32 46 45 48 4c 45 52
3a 20 46 65 '.0.>.2ERROR: Er'

-1721614.-110APPL->hdlc 0010 68 6c 65 72 3a 20 55 6e 67 fc 6c 74 69 67
65 72 'ror: Invalid'

-1721614.-110APPL->hdlc 0020 20 53 79 73 74 65 6d 6e 61 6d 65 20 6e 61
67 00 ' system name nag.'

-1721155.-441[01] APPL->hdlc 0000 00 2e 15 2b 00 32 56 50 53 52 43 6c
69 65 6e 74 '...+.2VPSRClient'

-1721155.-441APPL->hdlc 0010 3a 20 56 65 72 62 69 6e 64 75 6e 67 20 77
69 72 ': Connection is'

-1721155.-441APPL->hdlc 0020 64 20 67 65 73 63 68 6c 6f 73 73 65 6e 00
'being closed.'

Closing log file: 9:13:30

Page 187

2.9 2.9 Worker Client

2.9.1 Introduction

The worker client presents a graphical user interface for initializing the PSR client and
for displaying:

• Measurements
• Errors
• Status messages on important status changes and actions

which are delivered by the diagnostic server during an automatic test run (controlled by
the PSR). The application has no controlling influence on the testing. Only the display as
well as the saving of log information can be influenced.

The PSR client is initialized through the establishment of the connection to the server.
The PSR client is an independent program which forms the interface between diagnostic
server and PSR. The PSR program has no user interface (window). The worker client is
therefore necessary in order to monitor testing.
The command Connect with Server serves to initialize the PSR client. The PSR cannot
establish contact with the server over 3964R or TCP/IP until afterwards. The number of
worker clients (which can also be executed on various PCs) is not significant. Closing the

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#PSR�

Page 188

last client with a connection to the server ends the PSR client and - if no other Vediamo
client is active - also ends the server.

The worker client user interface supports several languages. The language is specified by
the Language entry in the [COMMON]of the Vediamo.ini configuration file.

2.9.2 Structure

The user interface consists of a title bar, a menu, and three display windows, as well as a
separate log window:

Measurement Window

All measurements which the PSR requests are displayed in this window (name, value,
and units). When the measurement reading cycle is ended the last read value remains in
the display, but in square brackets. The displayed values are cleared when new
measurements are selected or a new test run starts.

Error Window

Page 189

All errors reported during a test run are displayed here (code and text). A lit red light next
to an error code means that this error was reported as "current" in the last cycle. A dark
red light denotes a "stored" error. The window stores all errors reported during the test
run. The contents of the error window are not deleted until a new test run starts.

Status Window

Important actions are displayed here: contact with the ECU (established, ended, and
initialized), switching of an actuator, start and end of Java routines, as well as errors and
other important events in the diagnostic server.

Tile Bar

The current status of the test run is displayed here (number since program start, name of
tested system, test run status, ECU: ID and variant).

Log Window

This window is opened and closed with F9 = log window. This window shows the data
blocks received and sent by the PSR. Only the last 1000 blocks are displayed, but it is
possible also to continually store the data in a file.

2.9.3 Function Description

Connection with the PSR adapter

The worker client can receive data from a PSR adapter running on the same or on a
different computer. The server computer can be selected in two ways:

Using command line parameters:
The name or IP address of the computer on which the PSR adapter is running is
passed to the worker as the first parameter at the start.

With the F5 key:
The name of the server PC can be entered in the dialog which appears. An empty
ID is the same as "localhost", i.e., the server on the same PC is contacted (and
started, if necessary).

The ID of the contacted server is stored in the INI file when the program ends. This
server is then suggested, when the user presses F5 after the subsequent start.

If a server connection already exists, no connection to a new server can be established.
However, multiple clients can be started and connected to different servers.

Debug functions

Page 190

F9 = Log window opens or closes the log window. All blocks received and transmitted
between PSR and PSR adapter are shown there. The log can be stored continually in a
text file during runtime regardless if the log window is open or not. The content of the log
window can be stored also at a later point in time, but only the last 1000 message blocks
are available in the latter case.

The appropriate entry in the options menu automatically opens the log window when the
program starts. A log file can be specified in the options in which the log is automatically
stored.

Important!
The display in the log window does not always correspond exactly to the data
exchange between PSR and Vediamo. It contains blocks which the PSR
transmitted and which were correctly received by the Vediamo server, as well as
blocks which Vediamo prepared for transmission to the PSR. It is therefore
possible, if contact between the PSR and Vediamo is interrupted, that there are
already blocks in the log which the PSR did not receive anymore. In addition, the
times listed in the log are those from the diagnostic server and not the actual time
of transmission.
If there are suspected problems with the data transmission, the data exchange
should be saved in a separate file. This file can be specified in the LOGFILE entry
in the [PSR] section of the Vediamo.ini file. This logfile, generated by the PSR
client, contains an exact record of all bytes actually exchanged between Vediamo
and PSR.

F12 = Info... displays a window containing the current program version as well as the
path of the currently implemented INI file.

2.9.4 Examples: How can I...

Display the identblock of the tested ECU

F2 displays the identblock of the connected ECU, as long as a system is connected and
the contact is established to the ECU.

Display the CAESAR software version

F3 displays the version of the implemented CAESAR software (c32s.dll).

Adapt user interface

the appearance of the worker client can be conveniently adapted to your needs. The
position and size of the windows and subwindows can be changed by dragging with the
mouse. In addition, F7 opens a settings window where the font and fontsize can be

Page 191

changed (see more under Configuration). Any changes are automatically stored in
Vediamo.ini when the program ends.

2.9.5 Command Line Parameters

If you start Werker_Client.exe with a command line parameter, the program tries to
establish contact to the server immediately. The parameter must be either the computer
name or the server IP address.

Example:
werker_client localhost

or
werker_client 127.0.0.1

2.9.6 Configuration (INI Parameter)

As with other Vediamo programs, the current program settings are stored in the
Vediamo.ini file. The section [Werker] is reserved for the worker client.

Settings

Server
Server name
The name of the PSR adapter is automatically copied into Vediamo.ini when
connection is established. When the next call to establish connection is made after
a subsequent program start, the name of the last contacted server is suggested.

Warnings
Display of warnings
This parameter can only be modified directly in the INI file (with notepad.exe or
the INI editor). If it is set, warnings are displayed in the status window which can
be ignored in a normal test run, but which can be very helpful for debugging the
test bench when taking it into operation.

Logfile
If this entry is set to a valid filename, the specified file is opened
automatically when the log window is opened (F9 key) and all log entries
are saved continually.

Configuration of user interface

Window position and size can be changed by dragging the mouse. In addition, the
following settings can be changed using the options dialog (menu entry F7 = Options):

• The fonts of the three subwindows
• Display of the measurements as name or qualifier
• Automatic opening of the log window during program start
• Automatic opening of the log file when the log window is opened

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_WorkerClient_Configuratio�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 192

All these settings are automatically saved in the current Vediamo.ini. The program will
have the same appearance the next time it starts as it did for the previous run.

The entries which apply to the appearance of the worker window (size, position, font) can
only be modified directly in the client and not with an editor. Only in case of a "ruined"
GUI configuration it might be recommended to delete all the entries in an editor in order
to restore the window to its default state. This would apply to the parameter "Size" as
well as all entries which contain the string "Font".

2.10 Other Clients

Additional Vediamo clients are mentioned here for completeness:

2.10.1 Flash Station
Vediamo Flash Station
The Vediamo flash station (VFS) is used for automated mass flashing and for process-
sure flashing.

User intervention in selecting the appropriate flashware is minimized, or selection can be
omitted completely, through configuration. The flashing can then be performed even by
untrained personnel (e.g., inventory update).
More information can be found in Flash Station Help.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VFS/main_index.htm�

Page 193

2.10.2 DiMeLo
Dimelo - automatized recording of measurement data.
More information can be found in Dimelo Help.

2.10.3 UVI
UVI - Unipas Vediamo Interface
Unipas uses Vediamo over this interface to program (flash) ECUs and to obtain
diagnostic information in XML format.

2.10.4 More Clients And Utilities

• PSRChecker
This program is used in the acceptance procedure for implementing the Vediamo
interface in test bench software. It simulates rare but possible problem scenarios
which a test bench program must be capable of dealing with.

• PSRTerm
This is a complimentary test program (without any entitlement to support and
without liability) to manually simulate the communication with a PSR over
TCP/IP as well as serial (3964R protocol).

2.11 INI Editor
This application if for setting all parameters used in the Vediamo system. It is activated
from the StartCenter by clicking on the Options button on the toolbar. There is a detailed
description for each parameter, along with legitimate values in some cases. The settings
are stored in the Vediamo.ini file.

Please note:
If you change parameters which impact the function of a module, the change may
not take effect until after a restart.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/dimelo/main_index.htm�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_PSRAdapter_Exampleshowc�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�

Page 194

2.11.1 Menu

• File
o Open: Selects an INI file and loads it.
o Save: Writes all values in the INI file currently being edited.
o Save as: Selects an INI file and writes all values in it.

• Edit
o Reset this value: Resets the value being edited back to the original loaded

value.
o Reset all values: Resets all values (which the editor is aware of) back to

the original loaded values.
• Help

o Help: Calls up help.
o About: Displays a dialog box with information on the INI editor

Page 195

2.11.2 User Interface Areas

The setting to be edited is selected in the Selection Area. One or more different categories
are available.

After selection, information on the selected setting is displayed in the Description Area.

Different input elements for modifying the setting are displayed in the Input Area.

2.11.3 Input Elements

Input of boolean values (true/false, yes/no, ...)

To change the value, click on the box or select the ECU and press the space bar.

Input of numbers and strings

To change the value, click or select the input line and change its contents.
The minimum and maximum limits for numbers have to be maintained.

Input of paths and files

To change the value, click on the "..." button, or select it and press the space bar, then
select the path or a file.

 Input of lists

Page 196

Add:
Enter a value in the input line and press the "Add" button. The value is entered in
the list below the selected value.

Remove:
Select a value from the list and press the "Remove" button.

Change:
Select a value from the list. Change the value in the input line. Press the "Change"
button.

Up:
Select a value from the list. Press the "Up" button.

Down:
Select a value from the list. Press the "Down" button.

ATTENTION!
Only the content of the list is saved in the INI file. The content of the input line is
ignored when saving.

Input of predefined values

Open the drop-down menu and make the appropriate selection.

2.11.4 All INI Parameters
A complete list of all parameters in the Vediamo.ini file can be found in the attachment.

Page 197

3 How Can I...
...Connect a vehicle
...Connect an ECU without a Vehicle
...Flash an ECU
...Restart the Server
...Read Measurements from an ECU
...Read an ECU ID Block
...Read and Clear an ECUs Error Memory
...Execute a Quicktest
...Perform Variant Coding
...Execute a Java Routine (Java Program)

3.1 Connect a Vehicle

...Change the Connection Between K-Line and CAN

...Open Ecoute in the Same State I Closed It

To connect a vehicle, you need one of the following alternatives:

• CAESAR Part A + B2 or Part Y or Part J in addition to Part E4 (with OBD
connector)

• CAESAR Part C + special cable with OBD connector
• CAESAR Part X + WLAN connection on computer. Part X is equipped with an

OBD connector.
• CAESAR Part W (SDConnect)

The OBD connector in each case requires a cable and connector corresponding to the
hardware.

Insert the OBD connector into the vehicle's diagnostic socket (in the driver's footwell,
pointing down).

If you use a Part E4, please configure [CAESAR] USE_SIPartEDriver=1 in
Vediamo.ini.

Please note:
The Part E4 must be connected to the vehicle before you start a Vediamo module,
since the Part E4 requires the vehicle's voltage supply. If the Part E4 is not
connected to the vehicle, it is not recognized by CAESAR.

If you do not use a Part E4, the setting above may not be used, i.e., [CAESAR]
USE_SIPartEDriver=0

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ConnectaVehi�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ConnectanECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_FlashanECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_RestarttheSe�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ReadMeasurem�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ReadanECUIDB�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ReadandClear�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ExecuteaQuic�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_PerformVaria�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ExecuteaJava�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ChangetheCon�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ChangetheCon�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ChangetheCon�

Page 198

3.2 Connect an ECU without a Vehicle
To connect an ECU without a vehicle, you need one of the following alternatives:

• CAESAR Part A + B2 + F
• CAESAR Part Y + F
• CAESAR Part C + special cable with Part F
• CAESAR Part J + OBD connector + BreakOut-Box
• Part P - eCOM Box + F + USB2LAN Adapter
• CAESAR Part W (SDConnect)

as well as

• ECU with connector and cable harness or adapter.
To acquire a connector with cable harness or adapter, please contact one of the
ECU's developers.

• Power supply to power the ECU (12V or 24V)

If you use an adapter, you will also need measurement cables with 4mm banana plugs.

Connection to K-Line:

The available resources in Ecoute or in the system configuration determine whether the
ECU can be addressed over K-line.

Connect the ECU as depicted in the following figures (click on figure for larger image).

ECU connection over K-line
to Part F using adapter

ECU connection over K-line
to Part F without adapter

Please note, that a connection over K-line requires the supply voltage for Part F.

Connection to CAN:

Page 199

The available resources in Ecoute or in the system configuration determine whether the
ECU can be addressed over CAN.

Connect the ECU as depicted in the following figures (click on figure for larger image).

ECU connection over CAN
to Part F using adapter

ECU connection over CAN
to Part F without adapter

Please note:

• A 120Ω termination may be necessary for the CAN, depending on
whether the ECU has a terminating resistor installed or not.

• CAN SHLD (CAN shield/ground) is not identical to CAN Low. These
contacts must not be connected.

3.3 Flash an ECU
Starting point: .BIN-, .HEX- or .S19 files

Vediamo can only flash CAESAR Flash Files (CFFs), i.e. you must first transform the
binary files from the manufacturer into CFF format using DIOGENES.
Preferred Method: Pass the files and various technical specifications to the person
transcribing the ECU data file and receive the CFFs from them.
If this method cannot be applied (e.g., because of very short development cycles), you
can also transform the CFFs yourself. Please address the person transcribing the ECU
data file regarding this as well, since a description is beyond the scope of this document.
Please note that the ECU name (DIOGENES name) in the CFF must be the same as the
ECU name in the CBF.

Starting point: .CFF files

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Diogenes�

Page 200

Copy the files into the directory specified in the options (Vediamo.ini) under
[CAESAR]CFFPfad. If you like to sort the CFFs, you can create subdirectories in the
specified CFF path and sort the CFFs there.

After you have copied the files, you must restart the Vediamo server if it is running (see
taskbar).

Starting point: CFFs are in the CFF path and server is (re) started

• Start Ecoute.
• Establish contact with the ECU you wish to flash.
• Do not execute

• Open the flash dialog

 any services or Java routines! Access privileges are set by the
flash job.

• Proceed as described for flashing with Ecoute.

Behaviour when loading CFF files:
To reduce server startup time, loading CFF files on server init depends on some .ini
parameter settings:
In vediamo.ini there is a parameter
[Server]LoadCFFs.
This parameter influences the loading of CFF files on server init and when using the files.
The parameter may be set to 4 values:
0 Load all CFFs: All CFFs located in the CFF-path are loaded on server start (default
setting).
1 Do not load any CFF: No CFFs are loaded on server start. (load CFFs via "Flashdata
administration")
2 Load CFFs from ECU subdirectory, when necessary: All CFFs located in \ are loaded
on system selection.
3 Load CFFs from standard list, when necessary: Loads the flash files listed in the file \ \
Flashfiles.cfg are loaded on system selection.
See also Ecoute, "Flashdata administration"

3.4 Restart the Server
The server must be restarted under the following circumstances:

• You have placed CAESAR files or Vediamo system descriptions (VSB) in the
appropriate directory and want Vediamo to detect these files.

Important:
When restarting, make certain that no automated applications or Java routines are
running, these could crash or at least not run properly if the server is restarted.

When Ecoute is running:
Select the item Extras/ Restart Server from the menu.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_RestarttheSe�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_Flashing�

Page 201

Otherwise:
End all applications which require the server.

Note:
The StartCenter can also require the Server

3.5 Read Measurements from an ECU
3.5.1 Read individual measurements

• Start Ecoute
• Open the system containing the ECU of interest
• Establish contact to the ECU
• Open the tree underneath the ECU
• Open the tree underneath the group Measurements
• Double-click on the measurement of interest
• Read the event in the status window

3.5.2 Read multiple measurements simultaneously or read
measurements cyclically

• Start Ecoute
• Create a service group
• Read the measurements by pressing the appropriate buttons

3.6 Read an ECU ID Block
• Start Ecoute
• Open the system containing the ECU of interest
• Establish contact to the ECU
• Select the menu entry ECU/ID Block or use the key combination ALT + I
• If the information you require is not shown here, you can add measurements to

the ID block using the system configuration

Note:
Not every ECU supports all the data which can theoretically be displayed in the
ID block. Please also note the difference between ID block reading with 1A 86
and 1A 87.

3.7 Read and Clear an ECUs Error Memory
• Start Ecoute
• Open the system containing the ECU of interest
• Establish contact to the ECU

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_DisplayMeasu�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_Variante�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Konfitool_Eintrag_Variante�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�

Page 202

• Select the appropriate menu entry Error/..., depending on whether you wish to
read or clear

Note:
You can set parameters for reading errors and also clear errors in the error
window.

3.8 Execute a Quicktest
Important:

Before you execute a quicktest, you need quicktest data. This data can be
downloaded from the Vediamo homepage.

• Start Ecoute
• Select the menu entry Error/Quicktest or start Ecoute from the StartCenter with

the parameter "Quicktest" or start Ecoute with the command line parameter -k
• Configure the quicktest and execute it.

3.9 Perform Variant Coding
• Start Ecoute
• Load the system containing the ECU to be coded
• Establish contact to the ECU
• Select the menu entry Coding / Variant coding
• If all preconditions are correctly entered in the system description, they are

automatically executed when the Varcode window is opened. If this is not the
case, you can execute the necessary services(e.g., release, programming mode,
etc.) yourself by double-clicking in the selection window.

• Proceed as described above.

3.10 Execute a Java Routine (Java Program)
Storage of Java Routines

Java routine files can be saved in any directory. To make them easier to find it is
recommended to save them in a subdirectory of \VediamoDaten.
Java routines corresponding to a specific ECU, e.g. CR4 are best saved in the directory
VediamoDaten\CR4, and Java routines corresponding to various ECUs should be saved in
VediamoDaten\AllgemeineScripte. The data path for Java routines must always be
specified in Vediamo.ini under [INTERPRETER]ClassPath, so that the Java interpreter
can find the programs. Care should be taken that different versions of the same Java
routine (same routine name) do not exist in different directories, since it cannot be
guaranteed in that case that the expected routine version is executed.

Execution from Ecoute or PSR:

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ReadError�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_SystemQuickT�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_VariantCodin�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_VariantCodin�

Page 203

In order to be able to execute a Java routine (i.e., make it visible) from a Vediamo
application (Ecoute or PSR), the routine name must be entered in the VSB using the
system configuration.

The Java routine is displayed in Ecoute in the system window under routines and can be
started by a double-click.
The routine is started in the PSR adapter upon the command "600, routine name"
from the PSR.

Execution using the command line

The following must be entered in a batch file or in the command line:

In general:

javaw -classpath <JavaKlassenPfad_1>;<JavaKlassenPfad_2>;...; <routine
name>

Example:

"C:\Program Files\Vediamo\JRE\bin\javaw" -classpath
"C:\ProgramData\Vediamo\VediamoDaten\AllgemeineScripte";"C:\Program
Files\Vediamo\Java"; ExampleRoutine

3.11 Change the Connection Between K-Line and CAN
• Connect the ECU as described above
• Start Ecoute
• Load the system containing the ECU of interest
• Select the menu entry Properties from the ECU context menu (right mouse key

on ECU)
• Select the desired connection in the subsequent dialog, if necessary, take the

connection away from an ECU that is not required at the moment.
• Establish contact to the ECU

If the desired connection is not available, this can have various causes:

• The ECU cannot be communicated with over this connection. That a physical
connection exists does not mean that the ECU serves that connection. And if the
ECU serves the connection, that does not mean it is parameterized. Keyword
parameterization, CBF.

• The protocol for the loaded firmware is not implemented.
Keyword CaesarGo ↔ TLSlave Firmware

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#HowCanI_ConnectanECU�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#EcouteRessourcenmanagement�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#CBF�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TLSlave�

Page 204

3.12 Open Ecoute in the Same State I Closed It
• Start Ecoute
• Configure Ecoute the way you want to find it the next time you start (system,

window positions, etc.)
• Save a session by selecting the menu entry System / Save session as
• Open the Ecoute options by selecting the menu entry Extras / Options. Select the

Start page and activate the option Load last session

Alternate possibility:

• If you only want to reload the last system, then select the menu entry
Extras/Options, Go to the Start page and activate the option Load last system.
Window positions are not saved

• Pass the name of the session file to Ecoute in the command line
• Create a start profile for the StartCenter, with which you pass a saved session to

Ecoute in the command line

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFun_ConfigureEco�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_StartCenter�

Page 205

4 Glossary
Term Explanation

3964R Communication protocol between PSR and Vediamo for a serial
connection

Area The section of ECU memory to be flashed

CAN
Controller Area Network.
Serves for communication between ECUs within a vehicle and
between vehicle and tester.

CAESAR
Common Access To Electronic Systems of Automotive
Requirements.
CAESAR consists of a software and a hardware component.

CBF CAESAR Binary Format - binary format with ECU description data

CCF CAESAR Coding File - binary format with variant coding data

CFF CAESAR Flash File - binary format with flash data. Can contain
multiple areas / FlashKeys.

Configuration File Vediamo.ini (see below)

Diagnostic Pin Physical K-line pin between ECU and tester (e.g., on CAESAR Part
C)

DiagService Diagnostic service - symbolic communication with ECU, e.g., read
measurement

DiagJob Diagnostic Job - procedures interpreted by CAESAR which can
contain, e.g., DiagServices

DIOGENES Diagnostic data input and data management with SGML

DCOM Distributed Common Object Model - Microsoft model
for programming distributed applications

ECU Electronic Control Unit

FlashKey Unique key identifying the contents to be flashed

FlashWare Software stored permanently in ECU

Gateway
Gateway ECUs allow access to the member ECU connected to it. In
many cases, a gateway has a K-line and allows access to a CAN bus
to which the member ECUs and the gateway itself are connected.

GBF GPD Binary Format - binary format, contains a precompiled GPD

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Vediamo_ini�

Page 206

GPD General Protocol Description - general description language for
communication protocols

JNI
Java Native Interface - interface for connecting Java code to Win32
code (e.g., in C++ programmed DLLs). Used in VHandlers.dll to
make Vediamo classes "visible" for Java programs.

Java Object oriented programming language from Sun Microsystems.
Used in Vediamo for automated routines.

Handler Functions
Also: Built-in Function.
Permanently "integrated" Vediamo-Java interface functions
(VHandlers.dll)

ISOSCAN Application for K-line diagnostics of ECUs

K-Line Serial connection to ECU

Log File File containing log information. See logging.

Logging
Also: Tracing.
Record of program sequence for debugging (e.g., names of called
functions, etc.)

LUCA Langner Universal Communications API - Software for
communication protocols. Used in PSRClient.

Meaning Contents to be flashed to a specific area

Member Member ECUs can only be diagnosed by way of a gateway ECU (see
above).

MPF Engine test facility (Motorenprüffeld)

MIL Malfunction indicator light - ECU error status bit

Name Spoken name of a service (e.g., "RPM"). Not unique.

OutputRef Service that gets the set value of another service(e.g., actuator) from
an ECU.

Preparation Input parameter for services

Presentation Result interpreted from the ECU reply

Precondition

This is what services are called which execution is a precondition for
another action in the parameterization (CBF) of the ECU.
In contrast to this, preconditions can be specified by the user
independent of CBF specifications in Vediamo files (VSB, MWG,
STG) as well and can reference Java routines as well as diagnostic
services.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�
http://java.sun.com/�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaHandlerF�
http://www.langner.com/�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#CBF�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_DiagServer_DiagnosticPa�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFil�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_Ecoute_TheEcouteFil�

Page 207

Routine

Also: Java routine, automated test routine, Java program, Java client.
A Java program which accesses the diagnostic functionalities of the
DiagServer using the VHandlers interface. See the chapter on Java
Programs for more information.

PSR test bench controller (Prüfstandrechner) - controls engine test
benches. Obtains diagnostic data from Vediamo using the PSRClient.

PSR Protocol
Protocol for serial as well as TCP/IP connections. Existing protocol
between PSR and diagnostic computer. This protocol has been used
in the MPF program since the early '90s (serial only).

QDE Quality data collection computer (Qualitätsdatenerfassungsrechner)

Qualifier Unique service ID (e.g., "DT_RPM").

Script
Old term for Java routine (known as "functional chain" prior to that).
In Vediamo, automated routines are written in Java. See the chapter
on Java Programs for more information.

Siemens Protocol 3964R Serial protocol between PSR and diagnostic server, used over COMx.

Standard Service /
Standard Objekt

Certain services are named different in DIOGENES. Therefor they
are given a fixed standard name (e.g., Bandend, Unlock, Initialize) in
Vediamo to ensure a unique ID.

System
More precisely: ECU system.
The combination of one or more ECUs is referred to as a system in
Vediamo e.g. a motor with two ECUs is a system.

TL Slave CAESAR firmware executed in the CAESAR master

Monitoring Logging of the diagnostic protocol between tester and ECU

Vediamo Distributed diagnostic application for engines (Verteilte Diagnose
Anwendung für Motoren)

Vediamo.ini

Configuration file for the Vediamo modules. All the parameters the
Vediamo system requires are set in this file. The entries are sorted by
module. Some settings are saved automatically by programs; others
can only be edited by the user using the INI editor.

VOM Vediamo Object Model - object model relating to the engine test
facility, for diagnosing ECUs

VND file (vnd) Vediamo message description file - contains information for manual
command input

VSB file (vsb) Vediamo system description file - contains information on ECU
systems. Is created using the system configuration and loaded by the

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#Routine�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_JavaPrograms�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�
mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_SystemConfig�

Page 208

DiagServer.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_DiagServer�

Page 209

5 INI Parameters

COMMON
Name Description Comments

Language

This entry specifies the language for the
application. The prerequisite is that the
corresponding versions of the resource files
are available. The language is specified by
an abbreviation (e.g., EN=English,
FR=French, SP=Spanish, etc.). One DLL
file per language is created for each
application. The default language is
German.
The translated text from the DiagServer
contains the file VCommon_Res_XY.dll,
where XY is the language abbreviation. The
remaining applications use files whose
names are formed from the names of the
respective applications: [Application
name]_Res_XY.dll, e.g.,
Werker_Client_Res_EN.dll.

Default value:
DE

Possible values:
DE German
EN English

BLACKBOX
Name Description Comments

LogFile

Path and primary name of the program
logfile. All Vediamo program log outputs
are buffered by BlackBox and only saved to
the file specified here if a critical error
occurs or the user issues the explicit
command. The current data and time are
automatically appended to the filename
when the file is saved. The extension ".log"
is also added.
The default value is (when the entry is
empty): ".\BLACKBOX", so the logfile is
stored in the directory in which the program
file BlackBoxServer.exe is located.

Default value:
...\Vediamo\Log\B
lackBox

LineNum

Number of lines to be stored in the ring
buffer. For a bigger amount of running
Vediamo applications and for a more
komplex action, the number should be
greater.
Every line uses 150 byte of main PC

Default setting:
5000

Minimum value:
500

Page 210

memory.
Default value: 5000, sufficient for normal
use.
Min value: 500, entering lower values
results in reserving 500 lines.

ECOUTE
Name Description Comments

StatusTraceToF
ile

This entry specifies whether the content of
the Ecoute output window should also be
saved in a file. The output is saved in
"<[ECOUTE]ProgramLogPath>\Status.log"
.

Default setting:
0

ProgramLogPat
h

This entry specifies in which directory to
save the Ecoute status logfiles (the output in
the status window) should be saved.

Default setting:
...\Vediamo\Log\C
lient

TraceFileMaxSi
ze

This entry specifies the maximum size (in
bytes) of the log files.
The default setting si 524288 (1/2 MB).
The value 0 means the size is not limited.

Default setting:
524288

Minimum value:
0

DCDIChannelL
ogPath

This entry specifies in which directory to
save the Ecoute ECU related logfiles.

Default setting:
...\Vediamo\Log\E
coute

KLineTraceMo
de

This entry specifies whether the ECU
communication should be displayed in the
trace window blockwise, detailed, or not at
all.
The output is also saved in
"<[ECOUTE]DCDIChannelLogPath>\<syst
em>\<ECU>Trace.log".
The default setting is not to display.

Default setting:
0

Possible values:
0 Do not display
1 Display blocks

2 Display detailed (bytes
& timing)

3 Display blocks and
detailed

ShortTestDataD
ir

This entry specifies the quicktest directory.
The data for the quicktest must be provided
in this directory in subdirectories
corresponding to the different models.
The default setting is
"\Data\VediamoKurztestDaten".

Default setting:
...\Vediamo\Vedia
moShorttestData

LoadLastSessio
n

This entry specifies whether the last saved
session file should be loaded when Ecoute
starts.

Default setting:
0

Page 211

VSCPATH This entry specifies the path and the
filename of the last saved session file.

AutoInitOnSyst
emSelection

This entry specifies whether, subsequent to
a system change, the attempt should be
made to establish contact automatically with
all the ECUs of the new system.

Default setting:
0

AutoInitOnCont
actLost

This entry specifies whether, subsequent to
a loss of contact, cyclical attempts should be
made to re-establish contact with the
system's ECUs.
The default setting is no.

Default setting:
0

AutoInitOnFaile
dUserInit

This entry specifies whether, if the user
failed to establish contact, cyclical attempts
should be made to establish contact.
The default setting is no.

Default setting:
0

ExecuteInitSequ
ence

This entry specifies whether the
initialization routine should be executed.
The default setting is not to execute the
routine.

Default setting:
0

Possible values:

0 Initialization routine is
not executed

1
Initialization routine is
executed after system
selection

2
Initialization routine is
executed after contact
is established

3

Initialization routine is
executed after system
selection and contact
is established

SnapshotFormat

Specifies the file format (HTML or text) for
saving window contents.
This does not apply to cyclical saving of
measurements with cycle times > 0 (always
CSV).
The default setting is HTML format

Default setting:
html

Possible values:
text Text format
html HTML format

VarCodStringF
ormat

This entry specifies the coding string
format.
The default setting is decimal format.

Default setting:
Decimal

Possible values:
Decimal Decimal
Hexadecim Hexadecim

Page 212

al al

TreeStyle

The system services and routines are
displayed in the system window as a tree.
The branches of the tree are sorted in the
categories specified in Vediamo such as
measurements, actuators, functions, etc.
Alternatively, the services can be sorted by
the categories parameterized in
DIOGENES.
In this case, the services in the system
window are unfiltered (i.e., all
parameterized services are displayed, not
only those specified in the VSB file).
The default setting is as in the Vediamo
system description.

Default setting:
VSB

Possible values:

VSB As in Vediamo
system description

DIO As in DIOGENES

UseFilters

This entry specifies whether the filters
specified in the VSB are applied to the
diagnostic services.
The default setting is yes.

Default setting:
1

GlobalFilter

Filters certain services according to the
prefix. Services with the prefixes specified
here are shown as filtered if a system
description is created. The filtering can be
inactivated as usual in the system
configuration. Services with the specified
prefixes are not displayed in Ecoute. The
exception is if the filtering has been
inactivated using the configuration tool.
If Ecoute is being used without a .vsb (i.e.,
with a system description based on
DIOGENES parameterization (default
.vsb)), the prefixes specified here also
apply.
Example :
GlobalFilter = DNU_, WVC_, SES_, NR_,
RVC_, SRC_

Default setting:
DNU_, WVC_,
SES_, NR_,
RVC_, SRC_

DisplayQualifie
rs

This entry specifies whether names or
qualifiers are shown in the tree.

Default setting:
1

Possible values:
0 Names
1 Qualifiers

GraphMaxPoint This entry specifies the maximum number Default setting:

Page 213

s of measurement points a measurement curve
may have.
The default setting is 1000.

1000
Minimum value:

100
Maximum value:

10000

ShowDefaultSy
stems

This entry specifies whether the systems
from the DIOGENES parameterization
(CBFs) should be included in the system
selection display.
The default setting is no.

Default setting:
0

ShowVSBSyste
ms

This entry specifies whether the systems
from the Vediamo system description
should be included in the system selection
display.
The default setting is yes.

Default setting:
1

ShowVariantDe
tectionDialog

This entry specifies whether the dialog for
automatic variant recognition should be
displayed if only the basic variant of an
ECU was identified when contact was
established.
The default setting is yes.

Default setting:
1

EcuExitInitAfte
rFlashing

This entry specifies whether contact to the
ECU should be automatically ended and re-
established (ECU reset) if no shut down
cycle is performed after flashing.
The default setting is yes.

Default setting:
1

SERVER
Name Description Comments

SystemPfad

This entry specifies in which directory the
diagnostic server can find the system
description files it should use. In addition,
Vediamo scripts are looked for in this path
(see ClassPath in the [INTERPRETER]
section). Valid entries are normal path
specifications with drive and directory.
The default setting is ".\" (current director).

Default setting:
.\

SystemConsiste
ncyCheck

This entry specifies whether a consistency
check is performed when the system
description files are read. This check
determines if the relevant CBF or script files
have been changed after a VSB file was
created. By default, no consistency check is

Default setting:
0

Possible values (the
values may be combined
using the logical AND
operator):

Page 214

made.
0 Do not perform

consistency check

1 Consistency check for
CBF files

2 Consistency check for
Java routines

3

Consistency check for
GBF files (only alog
entry is created on
error)

BrokerTraceTo
File

This entry specifies whether or not
commands executed by the broker level
between the diagnostic server and its clients
are logged in the trace file.
The standard setting is no.

Default setting:
0

Name

This entry specifies the name of the
computer on which the diagnostic server
process is running and which Ecoute should
communicate with. If no name is specified
or the name is an empty string (Name=), it
is assumed that the diagnostic server
process is running on the same computer.
The name can be entered in UNC notation
(e.g., \\Server), DNS notation (e.g.,
Server.com) or as an IP address (e.g.,
123.45.67.89). If the computer is in the
same domain, only the name must be
entered (e.g., Name = August).

Note that the server and CAESAR settings
of this INI file do not apply to diagnostic
server processes which are not running on
the same computer as the client
(Ecoute/PSRClient/...).

ProgramLogPat
h

This entry specifies in which directory the
CAESAR logfiles are stored (see
[CAESAR] Debuglevel).

Default setting:
...\Vediamo\Log\S
erver

DCDIChannelL
ogPath

This entry specifies in which directory the
ECU-related server log files should be
saved.

Default setting:
...\Vediamo\Log\S
erver

Simulation The Vediamo server can be operated in Default setting:

Page 215

three modes: normal operation, simulation
and SIM recording.
The default setting is normal operation.

0
Possible values:
0 normal operation
1 Simulation
2 Record simulation data

KLineTraceMo
de

This entry specifies whether the ECU
communication (K-line and CAN) should be
logged blockwise, in detail, or not at all.
The output is saved in
"<[SERVER]DCDIChannelLogPath>\<Syst
em>\<ECU>Trace.log".
The default setting is not to log.

Default setting:
0

Possible values:
0 Do not log
1 Log blockwise

2 Log in detail (bytes &
timing)

3 Log blockwise and in
detail

LoadCFFs
This entry controls the loading of CFF files
on server initialization and when calling the
LoadCFFs function.

0 = Load all CFFs
1 = Do not load any CFF
2 = Load CFFs from ECU
subdirectory, when
necessary
3 = Load CFFs from
standard list, when
necessary

OBDProtocol
One of the protocols defined in
protocol.gbf, to be used for OBD
communication

KW2C3PE

OBDBaudrate The CAN baudrate for the OBD
communication 50000

OBDServiceFil
e

This file defines all servicese, PIDs, TIDs,
MIDs netc.
It contains also a reference to a file defining
all error codes (DTCs).
Both files must be in the same directory.

.\OBD\OBD2.xml

OBD_P2_MAX

Normally the P2 defined in the protocol is
sufficient. When timing problems occur
(possible with eCOM), a higher value might
make the communication more stable.

250

OBD_REQREP
COUNT

Normally every messgage is sent
once. When timing problems occur
(possible with eCOM), a higher value might
make the communication more stable.

1

Page 216

CAESAR
Name Description Comments

LANGUAGE

This entry specifies the language for the text
generated by CAESAR (error messages,
names of services). The prerequisite is that
the appropriate language files (*.CTF) are
available. The language is denoted by an
abbreviation (e.g., EN=English,
FR=French, SP=Spanish etc.).

CBFPFAD

This entry specifies in which directory
CAESAR can find the CBF files to use.
Valid entries are normal path specifications
with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

GBFPFAD

This entry specifies in which directory
CAESAR can find the GBF files to use.
Valid entries are normal path specifications
with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

DRIVERPFAD

This entry specifies in which directory
CAESAR can find the driver files to
use. Valid entries are normal path
specifications with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

CFFPFAD

This entry specifies in which directory
CAESAR can find the CFF files to use.
Valid entries are normal path specifications
with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

CTFPFAD

This entry specifies in which directory
CAESAR can find the CTF files to
use. Valid entries are normal path
specifications with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

CCFPFAD

This entry specifies in which directory
CAESAR can find the CCF files to
use. Valid entries are normal path
specifications with drive and directory.
The default setting is ".\" (current directory).

Default setting:
.\

DEBUGLEVEL
This entry specifies the degree of detail with
which the CAESAR actions are logged in
the file

Default setting:
1

Possible values:

Page 217

"<[SERVER]ProgramLogPath>\CAESAR.l
og". These files are always generated!

0 No output
1 Module related
2 Function related

3 Internal function
details

4 Maximum

CHANNELDE
BUGLEVEL

This entry specifies the degree of detail with
which channel related CAESAR actions are
logged. A logfile
"<[SERVER]DCDIChannelLogPath>\<Syst
em>\<ECU>Kanal.log" exists for every
channel.
Logging can be turned on and off
using Ecoute.

Default setting:
1

Possible values:
0 No output
1 Module related
2 Function related

3 Internal function
details

4 Maximum

TraceDebugOut
put

This entry specifies whether the log
information (DebugOutput and
ChannelDebugOutput) generated by
CAESAR are displayed in the
BlackBoxViewer window.
Enhances debugging, e.g., when developing
diagnostic jobs...
(see also the entries for DEBUGLEVEL and
CHANNELDEBUGLEVEL).
The default setting is no.

Default setting:
0

USE_SISerialD
river

This entry specifies whether the driver for
CAESAR Part D should be loaded.
The default setting is yes.

Default setting:
1

USE_SIPartCDr
iver

This entry specifies whether the driver for
CAESAR Part C should be loaded.
The default setting is no.

Default setting:
0

USE_SIPCMCI
ADriver

This entry specifies whether the driver for
CAESAR Part A should be loaded.
The default setting is no.

Default setting:
0

USE_SIPartXD
river

This entry specifies whether the driver for
CAESAR Part X should be loaded.
The default setting is no.

In addition, the settings in CAESAR's own

Default setting:
0

Page 218

slave.ini file in the driver directory are used
for operating CAESAR Part X.
The default setting is no.

USE_SIPartYD
river

This entry specifies whether the driver for
CAESAR Part Y should be loaded.
The default setting is no.

Default setting:
0

USE_SIPartJDri
ver

This entry specifies whether the driver for
CAESAR Part J (PassThru Vehicle
Communication Interface) should be loaded.
The default setting is no.

Default setting:
0

USE_SIPartEDr
iver

This entry specifies whether the driver for
CAESAR Part E should be loaded.
The default setting is dependent on the
diagnostic server subcomponent selection
during installation.
The default setting is no.

Default setting:
0

PinMapping

This entry specifies whether PIN mapping
should be activated or not when using
CAESAR Part E.
If the setting is made to use CAESAR Part
E in the subcomponent selection during
installation of the diagnostic server, then
PIN mapping is activated.

Default setting:
0

GPDFlashCachi
ng

Activates the cache mechanism for GPD in
the CAESAR slave:
If the required GPD is not already in the
flash EEPROM, it is written into the flash
EEPROM.
GPDs stored in the EEPROM are executed
from flash memory.
When GPDFlashCaching is 0, GPDs are
always executed in the CAESAR slave's
RAM.

Default setting:
1

BootNewFirmw
are

As of CAESAR release 2.8, a alternate new
firmware is available with which the GPD
runs on the CAESAR master. Up to now, it
supports KW2000 protocols. Some of the
advantages provided by the new firmware:
- Number of available CAN channels: 40 /
Piggyback
- Increased data throughput, e.g., flash
processes are accelerated significantly
The CAESAR hardware used must be

Default setting:
All

Page 219

booted with the new firmware in order to
activate this feature. By specifying the
hardware separated by commas, the
specified hardware is booted with the new
firmware.

The following setting causes the first and
fourth hardware to be booted with the new
firmware (to be specified as separate
numbers < 100 in the list):
BootNewFirmware=0,3

If the firmware should be applied to all
parts, simply enter "All" in the list.

If the old firmware should be used, the list
must be empty.

The default setting is All.

BootBusSimFir
mware

As of version 2.8.0, CAESAR provides
functions for bus simulation. This function
can be used in Vediamo through Java
routines. In order to use the bus simulation,
the respective CAESAR hardware must be
booted with a special firmware. In order to
selectively boot the available CAESAR
hardware with the bus simulation firmware,
the key BootBusSimFirmware is inserted:
- BootBusSimFirmware=ALL
Boots all CAESAR "cards" recognized
when CAESAR (ComConstruct) starts with
the bus simulation firmware.
- BootBusSimFirmware=0,2
To allow selective booting of individual
CAESAR "cards", the following rule is
applied: If one or more number less than
100 are specified in the key, they are
interpreted as consecutive card numbers. In
the above example, the first and third
CAESAR card recognized during booting
are booted with the bus simulation
firmware.

The above rule also applies to the
key BootNewFirmware which can be used

Default setting:

Page 220

to control the booting with the "new"
firmware. In case of conflicting
specifications, BootNewFirmware has
precedence over BootBusSimFirmware, e.g.,
if BootNewFirmware=0,1 and
BootBusSimFirmware=0,1
the first two cards are booted with the "new"
firmware.

DefaultDeviceN
umber

This entry specifies the default device
number.

Default setting:
0

DefaultDiagPin This entry specifies the default Diag Pin. Default setting:
0

MasterSlaveTi
meout

When a communication channel is opened,
among other things, a parameter is passed to
CAESAR specifying how long the
communication between CAESAR master
and slave may be inactive before CAESAR
generates a timeout error This value (in ms)
can be modified here. The default setting is
15000 ms.

Default setting:
15000

MonitoringFilte
rCANIDFile

This entry specifies the file which contains
the filter settings for the trace display.

MonitoringFilte
rCANIDs

This entry specifies whether the trace
display is filtered (see
MonitoringFilterCANIDFile).
The default setting is no.

Default setting:
0

UseDriverTypes

With CAESAR release 2.6, it is possible to
include multiple GPD references in the
parameterization for communication with
the ECU. These GPD references are
specified by driver-type codes. This entry
determines which driver type code
application is preferred, if a default system
or an older version of a system description
is to be loaded.
The following values are valid:
- NULL
- KLINE
- CANLS
- CANHS
- D2B
- J1708
- MOST

Page 221

- J1850
- CCD
- SCIENG
- SCITRANS
It is possible to specify more than one value.
A sequence can be defined in which the use
of certain values is preferred to that of
others. The values need to be entered in the
above format, separated by commas.
Unlisted keywords are ignored. The
complete entry is read when the diagnostic
server starts. If multiple GPD references are
included, the specified sequence of the
preferred GPD references is maintained
when accessing resources and ECU
information.
Example :
UseDriverTypes =
KLINE,NULL,CANLS,CANHS,D2B

UseServiceType
s

This entry makes it possible to prefilter the
services which are displayed, e.g., when
generating a system description. .
If "STANDARD" is set, the following non-
executable service types are not displayed
DST_SYSTEM,
DST_ENVIRONMENT_DATA,
DST_GLOBAL, DST_NEGRESP,
DST_BINARY_ACTUATOR_INP,
DST_BINARY_ADJUSTMENT_INP.

Default setting:
STANDARD

Possible values:

STANDARD

Certain
non-
executable
services
are not
displayed

ALL

All
services
are
displayed

TesterPresentInf
o

Controls the channel-related, enhanced
function for updating the communication
status. For certain ECUs / protocols, it may
be necessary for the Vediamo diagnostic
server to send a message to the ECU
cyclically, to update the communication
status. The function can be configured using
this entry.

The following can be specified (in the form
of a list):

Page 222

- the exact ID of the protocol under which
the feature should be activated
- the message to send as "tester present"
request, in hex format

Individual entries are separated by commas.

If a Part J is used for diagnostics on the
respective channel, the feature is
categorically deactivated for that channel.
The current configuration information is
always evaluated (taken from the INI file)
after a channel is opened.

Example - the settings for 2 protocols are
affected:
TesterPresentInfo=KW2C3PE,3e01,KW2C
2PE,3e01

INTERPRETER
Name Description Comments

ClassPath

This entry specifies the search path where
the Java Virtual Machine finds the Java
classes. Multiple directories can be
separated by semicolons. The default setting
is the current working directory (.\). The
path specified under SystemPfad in the
[SERVER] section is also searched.

VHandlersLib

This entry specifies, which library (DLL)
should be used for the Vediamo handler
functions in scripts. The default setting is
VHandlers.dll.

JavaInterpreter

This entry specifies the Java interpreter.
This is javaw.exe for Sun Java Runtime
Environment (JRE) without a console
window or java.exe for Sun JRE with a
console window. Each file can be found in
the respective JRE installation directory.

UseJVHandlers
Package

Vediamo's own Java classes are made
available in two ways:
In an "unnamed package" or in a
"JVHandlers package".
The default setting is the "unnamed
package".

Default setting:
0

Page 223

This entry specifies, whether
the "JVHandlers package" should be used.

PSR
Name Description Comments

COMPORT

This entry specifies which interface should
be used for communication with the PSR.
Valid values are the numbers 0 to n for
communication over the serial interface,
where n is the number of available serial
interfaces. Values over 1024 are interpreted
as the port number for TCP/IP
communication. The value 2049 is reserved
for TCP/IP communication.

Default setting:
1

Minimum value:
0

EngineTable
This entry specifies which file contains the
engine table. A sample file is generated and
specified when Vediamo is installed.

PreloadSystem

In this entry the name of a Vediamo system
can be entered. If a system is named, its
system file (VSB) will be loaded when PSR
Client is started. In this case the first engine
test run will not have to wait in the
beginning for loading the VSB file.
Important: the system name is case-
sensitive.

COMTIMEOU
T

This entry specifies the timeout in ms for
communication with the test bench. If no
communication with the test bench takes
place for this period of time, the test run
and communication with the ECU are
ended, and the transmission buffer is
cleared.
The value 0 means no timeout (default
setting).

Default setting:
0

Minimum value:
0

LOGFILE

This entry specifies in which file the byte-
level communication (with timestamp) is
logged. The default setting is empty and
means that no logging takes place. The
entry should be empty under normal
operation.

SYSTEMCONFIGURATION
Name Description Comments

ProgramLogPat This entry specifies in which directory to Default setting:

Page 224

h save the system configuration tool's log file. ...\Vediamo\Log\S
ystemConfiguratio
n

LogWin

This entry specifies whether a window in
which the application's actions are logged
should be opened when the application
starts.
The default setting is yes.

Default setting:
1

OutputLevel

This entry specifies the degree of detail with
which CAESAR actions are logged.
The messages are saved in:
"<[SYSTEMCONFIGURATION]ProgramL
ogPath>\VediamoSysConfLog.txt" .
The default setting is module-related.

Default setting:
1

Possible values:
0 No output
1 Module-related
2 Function-related

3 Internal function
details

4 Maximum

LogFileMaxSiz
e

This entry specifies the maximum size (in
bytes) of the VediamoSysConfLog.txt
logfile in the system configuration
directory.
The initial setting is 1000000 (ca. 1 MB).
The minimum limit is 10000 bytes.

Default setting:
1000000

Minimum value:
10000

Worker
Name Description Comments

Server

The name of the server with which the
program was connected last. No automatic
connection takes place, but this server name
is recommended to the user when the F5
key is pressed. It can be acknowledged or
overwritten. This entry is set automatically
to the name of the server to which a
connection is established.

LogFile

File in which the log window entries are
recorded. If this entry is missing or empty,
no data is automatically recorded. This entry
is updated automatically when the program
is ended in accordance with the settings in
the options window.

Warnings Specifies whether warnings of unusual Default setting:

Page 225

conditions (which do not necessarily result
in an end to operation) should be displayed
in the worker clients status window or not.
The default setting is no.
This parameter can only be modified
directly using the INI-Editor, but not using
the worker client options window.

0

PRIVATE
Name Description Comments

IncrementalBac
kup

This entry specifies whether subsequent
status logfile should be appended with a
continually incrementing number
(Status1.log, Status2.log, ...)

Default setting:
0

TraceHandlerFu
nctions

Supplementary setting for Java function
calls. Simplifies debugging when executing
Java routines.

Default setting:
0

TraceThreadID
ToFile

Supplementary Thread-ID entry in logfiles.
Simplifies user program debugging.

Default setting:
0

UVI
Name Description Comments

SYSTEM
Default system loaded by UVI when the
initialization specification does not contain
a system name in its parameter list.

mk:@MSITStore:C:\Program%20Files\Vediamo\BIN\VediamoHelp_EN.chm::/VediamoHelp.html#TheVediamoMo_INIEditor�

Page 226

6 PSR Messages

From the To the Explanation Code Data Comments

PSR DiagServer New Engine 3 Engine ID (S)

Each engine is
assigned a system file,
and optionally, an
initialization routine.

DiagServer PSR Data loaded 5 System
qualifier (S)

System ID (of the
VSB file)

DiagServer PSR Unknown
engine type 9 Error message

(S) Cause of error

PSR DiagServer Get CAESAR
version 10 - The version of the

c32s.dll is transmitted

DiagServer PSR CAESAR
Version 11 Version (S) E.g., "02.07.12"

PSR DiagServer Get ID block
from ECU 20 - Contact with ECU

must be established

DiagServer PSR ID block from
ECU 21 ID block (S) Long string with

wrapped lines

DiagServer PSR ID block error 22 Error text (S)

DiagServer PSR Error
message 50 Message as

string (S)

Error in DiagServer,
e.g. internal program
error, wrong
configuration,
hardware error

PSR DiagServer
Establish
contact with
ECU

100 -

The program starts a
cyclical activation
process. No reply
until contact
successfully
established

DiagServer PSR Contact
established 101 ECU name (S)

DiagServer PSR Contact
ended 102 ECU name (S)

Is sent when contact
is ended, not when
contact cannot be

Page 227

established.
Exception: when no
system is loaded, 100
is answered with 102
without an ECU
name.

DiagServer PSR Measurement
information 109

Number(W)
Qualifier (S)
Unit (empty S)

(after command
113)

A list of all
measurements is
transmitted, numbered
consecutively
beginning with 1. The
last block with
number 0 and empty
name means end of
list.
The units are
transmitted as an
empty string because
they cannot be
identified by the
CAESAR hardware at
this point. However,
existing PSR
programs require a
string parameter.

DiagServer PSR Error cleared 110 -

DiagServer PSR Error cannot
be cleared 111 Error code (W)

1 = Diagnostic
message missing
5 = Error cannot be
cleared

DiagServer PSR Initialization
completed 112 -

PSR DiagServer
Transmit
measurement
qualifier list

113 -

List of all
measurement
qualifiers (Service
109) is requested.
Attention! The list of
measurements can be
appended by
additional settings
from the current ECU

Page 228

variant after contact
has been established.

PSR DiagServer Protocol
information 150 - Request ECU

protocol ID

DiagServer PSR Protocol
information 151 Protocol name

(S) E.g., "KWP2000E"

PSR DiagServer
Send list of
measurement
names

313 -

List of all
measurement names
(Service 109) is
requested.
Attention! The list of
measurements can be
appended by
additional settings
from the current ECU
variant after contact
has been established.

DiagServer PSR Throttle valve
learned 114 -

DiagServer PSR Throttle valve
not learned 115 -

DiagServer PSR Error cannot
be read 200 Error text (S)

DiagServer PSR Error 201

Error code (S)
Name (S)
or (see if 235-
238)
Status (W)
Error code (S)
Name (S)

Two empty strings are
transmitted if no
errors exist, or to
mark the end of the
error list.

PSR DiagServer Clear all
errors 202 -

PSR DiagServer Start error
read 203 -

Server replies
cyclically with 201
blocks. Errors are
read from the ECU by
default after the first
initialization of the
ECU during the test

Page 229

run.

PSR DiagServer End error
read 204 -

Can also be sent
before initialization
with command 100,
but only after loading
the system with
command 3. No errors
are read after contact
is established in this
case.

DiagServer PSR
Error
environment
data

211
Error code (S)
Environment
data (S)

The environment data
consists of the name,
value and possibly the
units, separated by
spaces.

PSR DiagServer

Start error
with
environment
data read

213 -

Server replies
cyclically with 201
blocks followed
by 211 blocks

PSR DiagServer Read error
once 230

Optional:
Error type can
be selected with
a WORD (0..4)
or one of the
following
strings:
POWERTRAIN
(=0)
CHASSIS (=1)
BODY (=2)
NETWORK
(=3)
UNDEFINED
(=4)
Default: all
(=0xFFFF)

Server replies with
201 blocks

PSR DiagServer
Read error
once,
unfiltered

231 Server replies with
201 blocks

PSR DiagServer

Read error
once, with
environment
data

232
Server replies with
201 blocks followed
by 211 blocks

PSR DiagServer

Read error
once, with
environment
data,
unfiltered

233
Server replies with
201 blocks followed
by 211 blocks

PSR DiagServer
Read error
once, with
status byte

235
Server replies as in
230-233, but the 201
reply blocks begin
with a WORD value
(error status),
followed by P-code

PSR DiagServer
Read error
once,
unfiltered,

236

Page 230

with status
byte

and error text. The
211 blocks
(environment data)
remain unchanged.

PSR DiagServer

Read error
once, with
environment
data, with
status byte

237

PSR DiagServer

Read error
once, with
environment
data,
unfiltered,
with status
byte

238

DiagServer PSR Cannot read
measurements 300 Error text (S)

DiagServer PSR Measurement 301 Number (W)
Value (S)

PSR DiagServer Start
Transmit data 302 -

DiagServer transmits
data (measurements)
continuously. If
service 304 was not
transmitted after the
test started, all
measurements defined
in the VSB file are
transmitted.

PSR DiagServer End Transmit
data 303 -

DiagServer ends the
continuous
transmission of data

PSR DiagServer
Select
measurement
value

304
Measurement
numbers (list of
words)

If a transmission was
ongoing, it is
cancelled.
Measurements must
subsequently be
requested again with
service 302, or read
once with 305.

PSR DiagServer Read 305 - Exactly one read

Page 231

measurement
once

cycle is executed. The
selection with 304 or
306 applies.

PSR DiagServer
Select
measurements
and read once

306
Measurement
numbers (list of
words)

Corresponds to 304,
305. The entered
values remain
selected until the next
304 or 306 command.

PSR DiagServer Start flashing
ECU with
given flash
keys

400 Flashkeys (S)
optional:
ECU-Qualifier
(S)

Several flashkeys can
be separated by blank.
If the flashed ECU is
not the main ECU, its
qualifier has to be
given as 2nd
parameter.
The ECU msut be
initialized and the
flashkeys must be
valid.
The program answers
with 401, 405 or with
402

DiagServer PSR Flashing
started

401 Flashkeys (S)

DiagServer PSR Flashing start
failed

402 Flashkeys (S)
Error text(S)

DiagServer PSR Flashen
finished

405

PSR DiagServer Laoad
Flashware
(CFF file)

410 File path (S) A full path is
required. Before
loading, prevoius
flashware is unloaded.
If an empty path is
entered, only
unloading is done.
The answer is 411 or
412

DiagServer PSR Flashware
loaded

411 Flashkeys (S) Reporting of the
flashkeys found in the
flashware

Page 232

DiagServer PSR Flashware
cannot be
loaded

412 Dateipfad (S)
Error text (S)

PSR DiagServer Load
flashware and
flash ECU

430 File path (S)
optional:
ECU-Qualifier
(S)

The same action as
410 and 400, but only
if the flashware
contains one flashkey.
Otherwise the
program answers with
402

PSR DiagServer Show
flashing
progress

440

DiagServer PSR Flashing
progress

441 Number (Word)
between 0 and
100

If no flashing in
progress, 0 is returned

PSR DiagServer Show
Flashkeys

450 optional:
ECU-Qualifier
(S)

Show all flashkeys in
the currently loaded
flashware

DiagServer PSR Flashkeys 451 Flashkeys (S) All flashkeys
separated by a blank

PSR DiagServer Activate
actuator 500 Name (S)

Value (S)

DiagServer does not
acknowledge;
Discrete actuator:
Value must be passed
as string, e.g.,
"FN_ELAB_AUS"
(Note: case
sensitive!).
For continuously
adjustable actuators,
e.g., the value 0.5 is
entered as a null-
terminated string
"0.5" or "0,5"
depending on regional
system settings.

DiagServer PSR Actuator
activated 501 Qualifier (S)

Result (S)

If OutputRef
available, its result is
transmitted

Page 233

DiagServer PSR
Cannot
activate
actuator

502 Qualifier (S)
Error text (S)

PSR DiagServer Request
actuator list 510

Corresponds to 560
with type "act"

PSR DiagServer Request
actuator info 520 Qualifier (S) Corresponds to 561

PSR DiagServer Execute any
service 550 Qualifier (S)

Parameters (S)

Parameters are
transmitted in a string,
separated by "&"

DiagServer PSR Service
executed 551 Qualifier (S)

Result (S)

If OutputRef
available, its result is
transmitted

DiagServer PSR
Error while
executing
service

552 Qualifier (S)
Error text (S)

PSR DiagServer

Request list
of all services
(filtered
according to
VSB file)

560

Optional: Type
(S)

act, adj, fun,
pro, mea, gen.

Default is gen

Type abbreviations
correspond to:
actuator, adjustment,
function, procedure,
measurement, generic.

Server replies with
563 blocks.

PSR DiagServer

Request
complete list
of all services
with number
of parameters

561

Optional: Type
(S)

act, adj, fun,
pro, mea, gen.

Default is gen

Server replies with
563 blocks.

PSR DiagServer
Request
information
on service

562 Qualifier (S) Server replies with
564 blocks.

DiagServer PSR

List of all
services of
the specified
type

563

Qualifier (S)

Number of
parameters (S)

For requests with 560:
Qualifier only.
For requests with 561:
Qualifier and number
of parameters.

Page 234

End of list: Empty
string

DiagServer PSR Information
on service 564 Info text (S)

Multiple blocks per
service
The last block
contains an empty
string

DiagServer PSR

Problems
during
information
on service

565 Error message
(S)

PSR DiagServer Send API-
1message

570 Byte array input payload only.
Header and
Checksum are
calculated by the
program.

DiagServer PSR ECU answer
to API-1
message

571 Byte array Payload only.

DiagServer PSR Sending
failed

572 Error text (S)

PSR DiagServer Send API-
1message

580 Byte array as
string (S)

Two-digit hex
numbers, separated by
blank

DiagServer PSR ECU answer
to API-1
message

581 Byte array as
string (S)

PSR DiagServer Start Java
routine 600

Name (S),
Optional
parameter (S)

It is not possible to
start multiple routines
at once, error message
occurs (service 602).

DiagServer PSR Java routine
is started 601 Name (S)

Output when
available routine is
started

DiagServer PSR
Result, or
error, from
Java routine

602 Result (W)
0 = routine executed
correctly
1 = routine not

Page 235

available
2 = routine erroneous
3 = routine currently
running
4 = routine cannot be
started
5 = Other error

PSR DiagServer End test run 700 - Result is "Test run
ended"

DiagServer PSR Test run
ended 701 -

PSR DiagServer End program 702 -

PSR adapter is
deactivated.
DiagServer keeps
running as long as
client applications
access it. (Use not
recommended, only
implemented for
compatibility reasons)

PSR DiagServer Server Reset 710 -

CAESAR, CAESAR
files, system
descriptions, engine
table are reset.

DiagServer PSR Server Reset
complete 711 - Reply to 710

PSR DiagServer
Server
initialized
again

720 -

CAESAR, CAESAR
files, system
descriptions, engine
table are reloaded.

DiagServer PSR
Server
initialization
complete

721 - Reply to 720

DiagServer PSR Service not
recognized 800 ServiceID

(Word)

DiagServer PSR
Format error
in service
parameter

801 -
Parameter format is
wrong (e.g., string ist
not null-terminated)

Page 236

DiagServer PSR Format error 803 -

Length of received
message is wrong
(e.g., smaller than 6
bytes. or length
specification does not
match length of
message)

PSR DiagServer Log start/stop 1000 Filename (S)

Empty name: Stop
log. Only works with
3964R, not with
TCP/IP

PSR DiagServer Display
engine list 1100

DiagServer PSR Engine list 1101 Engine name
(S)

End of list: Empty
string

PSR DiagServer Display Java
routine list 1200

DiagServer PSR Java routine
list 1201 routine ID (S) End of list: Empty

string

Up to 4999 - reserved for future use

DiagServer PSR Upgrade
service

5000
-
30000

none,
Word
or ASCII string

Available for user-
defined Java routines.
See also Table 6 in
Attachment 5.4

Page 237

7 Example: Java Routine

/**
 * Title: Example Java Routine
 * Description: Example of a test routine that is started from Ecoute
 */

import JVHandlers.JVECU;
import JVHandlers.JVSystem;
import JVHandlers.JVClient;
import JVHandlers.JVErrorService;
import JVHandlers.JVUtil;

public class Example {
 JVClient client = new JVClient();
 JVSystem system = new JVSystem();
 JVErrorService errorS;
 String[] ecus;
 JVECU ecu;
//******************** The following constants must be entered
explicitly (depending on ECU).

 final String sollECU="SollECU",

functionQualifier="FunctionQualifier",procedureQualifier="ProcedureQual
ifier",

adjustmentQualifier="AdjustmentQualifier",adjSetValue="AdjustmentValue"
;
 final String[] measQualifier={"meas_1","meas_2","meas_3"};
//***
**
 String measResult, funcResult, adjResult, adjGetValue, procResult;

 public Example() {
// get the ECUs available in the system from the loaded VSB
 ecus = system.GetEcuQualifiers();

// the program works with the desired ECU
 for (int i = 0; i < ecus.length; i++)
 {
 if (ecus[i].equalsIgnoreCase(sollECU)){
 ecu = new JVECU(ecus[i]);
 break;
 }
 }
 if(ecu==null){
 errorMessage("System does not contain desired ECU " + sollECU +
"!",true);
 // "true" means that this error ends the program
 // the program would continue to run with "false"
 }

Page 238

 client.Trace("ECU "+ sollECU + " selected"); // output to Ecoute
status window
 client.Trace("Establish contact..."); // establish contact with ECU
sollECU...
 if (!ecu.Init()) {
 errorMessage("Unable to establish contact to "+ sollECU + ".",true);
 }
 client.Trace("Contact established");

 // Measurements are read and displayed...
 client.Trace("Read measurements...");

 for (int i = 0; i < measQualifier.length; i++) {
 measResult = ecu.GetMeasurementValue(measQualifier[i]);
 if (ecu.IsErrorSet()) {
 errorMessage(measQualifier[i]+" read failed! -
"+ecu.GetLastError(),false);
 }
 else {
 client.Trace(measQualifier[i]+": "+measResult);
 }
 }

// Execute function...
 client.Trace("Function " + functionQualifier + " being executed...");
 funcResult = ecu.ExecuteFunction(functionQualifier);
 if (ecu.IsErrorSet()) {
 errorMessage("Execution of function " + functionQualifier + " failed!
- "+ecu.GetLastError(),false);
 }
 else {
 client.Trace(functionQualifier+": "+funcResult);
 }

// Execute procedure...
 client.Trace("Procedure " + procedureQualifier + " being
executed...");
 procResult = ecu.ExecuteProcedure(procedureQualifier);
 if (ecu.IsErrorSet()) {
 errorMessage("Execution of procedure " + procedureQualifier + "
failed! - "+ecu.GetLastError(),false);
 }
 else {
 client.Trace(procedureQualifier+": "+procResult);
 }

// Set adjustment...
 client.Trace("Adjustment " + adjustmentQualifier + " being set to " +
adjSetValue + " ...");
 adjResult = ecu.SetAdjustmentValue(adjustmentQualifier,adjSetValue);
 if (!adjResult) {
 errorMessage("Setting of adjustment" + adjustmentQualifier + " failed!

Page 239

- "+ecu.GetLastError(),true);
 }
 else {
 client.Trace("Setting of adjustment " + adjustmentQualifier + " was
successful.");
 }

// Read adjustment value...
 client.Trace("Adjustment " + adjustmentQualifier + " being read...");
 adjGetValue = ecu.GetAdjustmentValue(adjustmentQualifier);
 if (ecu.IsErrorSet()) {
 errorMessage("Reading of adjustment" + adjustmentQualifier + " failed!
- "+ecu.GetLastError(),true);
 }
 else {
 client.Trace("Adjustment " + adjustmentQualifier + " is set to " +
adjGetValue + " .");
 }

// Clear all errors in ECU memory...
 client.Trace("Clear all errors...");
 errorS = new JVErrorService(ecu);
 if (!errorS.ClearAllErrors()) {
 errorMessage("Clear all errors failed!",false);
 }
 client.Trace("All errors cleared.");

// disconnect and end Java client
 JVUtil.DisconnectFromServer();
 System.exit(0);
 }

 public static void main(String[] args) {
 Example Ex_1 = new Example();
 }

 public void errorMessage(String text, boolean finish) {
 client.Beep();
 client.Information(text);
 client.Trace(text);
 if (finish){
 JVUtil.DisconnectFromServer();
 System.exit(1);
 }
 }

} // class Example

	1 Introduction
	1.1 Application Areas, Focus
	1.1.1 Development
	1.1.2 Production
	1.1.3 Java Routines

	1.2 First Steps
	1.2.1 Basic Terms
	1.2.2 Operating Instructions for The Hasty

	1.3 Development Cycles
	1.4 Association with Hardware and Other Software
	1.4.1 CAESAR
	1.4.2 LUCA
	1.4.3 PSR
	1.4.4 UNIPAS
	1.4.5 Java Runtime

	1.5 Perspectives
	1.6 Ordering, License, Support
	1.7 Installation
	1.7.1 System Requirements
	1.7.2 Earlier Versions
	1.7.3 Installation Procedure
	1.7.3.1 Alternative Default Settings for Data Paths

	1.7.4 Installation Options / Parameters
	1.7.5 Installing and Checking the eCom Hardware (Part P)
	1.7.6 Other Required Hardware/Software

	1.8 Design and Operating Mode
	1.8.1 C/S Architecture
	1.8.2 Layer Model
	1.8.3 DCOM
	1.8.4 WCF and .Net 4.0
	1.8.5 Multitasking (Multi-ECU)
	1.8.6 Logs
	1.8.7 Vediamo Configuration

	2 The Vediamo Modules
	2.1 DiagServer
	2.1.1 Introduction
	2.1.2 Configuration (INI Parameter)
	2.1.3 Diagnostic Parameterization
	2.1.4 Examples: How can I...
	2.1.4.1 End Server ("Kill")
	2.1.4.2 Exchange CAESAR Hardware
	2.1.4.3 Flash CAESAR Hardware with other Firmware
	2.1.4.4 Try Out DiagServer without Hardware or License (Simulation Mode)

	2.2 StartCenter
	2.2.1 Structure

	2.3 System Configuration
	2.3.1 Introduction
	2.3.2 Structure
	2.3.3 The Functions
	2.3.3.1 File Menu
	2.3.3.2 Edit Menu
	2.3.3.3 Menu View
	2.3.3.4 Menu Help "?"

	2.3.4 Working with the System Configuration
	2.3.4.1 Creation of a New System Description
	2.3.4.2 Working a Preexisting System Description
	2.3.4.3 Updating the Content of a System Description
	2.3.4.4 Checking the Content Consistency of a System Description
	2.3.4.5 Search Function
	2.3.4.6 Batch Mode
	2.3.4.7 Setting of Options Beyond Command Line Parameters

	2.3.5 Special Features
	2.3.5.1 Service Filters

	2.3.6 Configuration (INI Parameters)

	2.4 Ecoute
	2.4.1 Introduction
	2.4.2 GUI Structure
	2.4.3 The Ecoute Files
	2.4.4 The Ecoute Functions
	2.4.4.1 Select System
	2.4.4.2 Close System
	2.4.4.3 Contact ECU
	2.4.4.4 Execute Service
	2.4.4.5 Read Error
	2.4.4.6 Read Permanent Errors
	2.4.4.7 Error Reading by Status
	2.4.4.8 System Quick Test
	2.4.4.9 Service Groups
	2.4.4.10 Variant Coding
	2.4.4.11 Flashing
	2.4.4.12 OBD2
	2.4.4.14 Macros
	2.4.4.15 Java Routines
	2.4.4.16 Routine Generator
	2.4.4.17 Use Cases
	2.4.4.18 Elements of the Window
	2.4.4.19 Standard Objects
	2.4.4.20 Manual Command Input
	2.4.4.21 CAN Bus Simulation
	2.4.4.22 Snapshot File Storage
	2.4.4.23 Simulation of ECU Communication
	2.4.4.24 Clamp 15 Handling

	2.4.5 The Ecoute Menus
	2.4.6 Keyboard Operation

	2.5 Java Handler Functions
	2.5.1 Vediamo Java Interface

	2.6 Java Programs (Java Routines)
	2.6.1 Introduction
	2.6.2 Executing a Java routine from Ecoute or Another Client
	2.6.3 Java Program as Standalone Client
	2.6.4 Example: Program, Compile and Execute a Simple Routine
	2.6.5 Particulars
	2.6.6 Configuration (INI Parameters)

	2.7 BlackBox
	2.7.1 Introduction
	2.7.2 Structure and Function
	2.7.3 BlackBox Functions
	2.7.4 BlackBoxViewer: Log Display at Runtime
	2.7.5 Linking to Other Applications
	2.7.6 Configuration (INI Parameters)

	2.8 PSR Adapter
	2.8.1 Introduction
	2.8.2 Communication between Vediamo and PSR
	2.8.3 The Functions of the PSR Clients
	2.8.4 Configuration
	2.8.5 The Engine Table
	2.8.6 Examples - how can I...

	2.9 2.9 Worker Client
	2.9.1 Introduction
	2.9.2 Structure
	2.9.3 Function Description
	2.9.4 Examples: How can I...
	2.9.5 Command Line Parameters
	2.9.6 Configuration (INI Parameter)

	2.10 Other Clients
	2.10.1 Flash Station
	2.10.2 DiMeLo
	2.10.3 UVI
	2.10.4 More Clients And Utilities

	2.11 INI Editor
	2.11.1 Menu
	2.11.2 User Interface Areas
	2.11.3 Input Elements
	2.11.4 All INI Parameters

	3 How Can I...
	3.1 Connect a Vehicle
	3.2 Connect an ECU without a Vehicle
	3.3 Flash an ECU
	3.4 Restart the Server
	3.5 Read Measurements from an ECU
	3.5.1 Read individual measurements
	3.5.2 Read multiple measurements simultaneously or read measurements cyclically

	3.6 Read an ECU ID Block
	3.7 Read and Clear an ECUs Error Memory
	3.8 Execute a Quicktest
	3.9 Perform Variant Coding
	3.10 Execute a Java Routine (Java Program)
	3.11 Change the Connection Between K-Line and CAN
	3.12 Open Ecoute in the Same State I Closed It

	4 Glossary
	5 INI Parameters
	6 PSR Messages
	7 Example: Java Routine

