

Diesel Fuel Lubricity

Requirements for Light Duty Fuel Injection Equipment

CARB Fuels Workshop

Sacramento, CA Feb. 20, 2003

Klaus Meyer and Thomas C. Livingston Robert Bosch GmbH

This presentation covers the interests of

- Robert Bosch GmbH
- Delphi Diesel Systems
- Denso Corporation
- SiemensVDO Automotive AG
- Stanadyne Automotive Corporation

Our Mission is to increase the number of Diesel vehicles in the USA especially Passenger Cars + SUVs + Light Duty (LD)

- Build a Cleaner Environment
- Conserve Energy Resources
- Reduce Fuel Consumption / CAFE
 - → Lower CO₂ Emission
- For Diesel Fuel Injection Equipment (DFIE)
 Lubricity

is the most valuable and crucial property

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

BOSCH

Scope of Presentation

Introduction Experience in Europe Comparing USA and Europe

- Vehicles and DFIE
- Survey Data

Requirements

- HFRR method
- Sensitivity of DFIE to HFRR
- Rating Table for Assessed Pump Wear
- Endurance Performance

Data for Diesel Fuels with HFRR between 400 - 650 µm

Pump Performance: Rotary pumps, Common Rail Systems
 Engine Results

Conclusions

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

A Brief Review

- Sweden introduced sulphur-free fuels in 1990,
 California followed in 1993 with low-sulphur fuels
 - \rightarrow Failures of fuel-lubricated injection pumps (for passenger and light duty vehicles)
- Lubricity identified as cause
 - → Hydroprocessing for desulphurization reduces lubricity enhancing fuel components
- All DFIE manufacturers afflicted
- → Process to define wear test method and lubricity limit for fuel spec: HFRR (ISO 12156-1, -2, ASTM D-6079)

 ® EN 590 et al. Lubricity Limit =460 µm SLBOCLE (ASTM D-6078/99)

[©] Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

Current Situation in EU

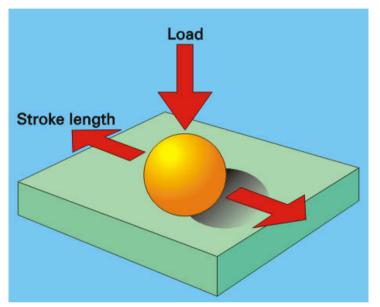
- → In Europe 40 % of new cars are **Diesel** vehicles:
 - \rightarrow Passenger and Light Duty vehicles (e.g. SUV)
- → EN 590 lubricity spec. (HFRR 460 µm max.) successfully prevents field problems
- Diesel vehicles improve fuel consumption by 30 % compared to SI engines
- Diesel vehicles have low fuel consumption (up to 78 mpg)
- → Diesel vehicles produce lower CO₂ emissions
- Diesel vehicles provide low service costs and high service intervals
- Drivers enjoy driving diesel vehicles due to superior torque characteristics
- Majority of High Pressure DFIE is fuel-lubricated

[©] Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

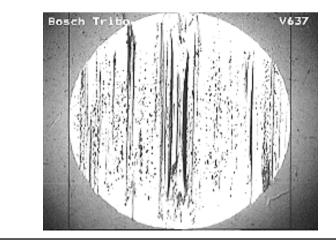
Main Differences in Diesel Vehicles

	Today ↓		Future ↓			
	U.S. / California	EU	U.S. / California	EU		
Vehicles	Heavy Duty	Passenger	Light Duty	Passenger		
	Light Duty	Light Duty	 Heavy Duty 	Light Duty		
		 Heavy Duty 	 Passenger 	Heavy Duty		
DFIE	Inline pumps	Common Rail	Inline pumps	Common Rail		
	• UIS/UPS	• UIS/UPS	• UIS/UPS	• UIS/UPS		
	Common Rail	Rotary pumps	Common Rail	Rotary pumps		
	 Rotary pumps 		Rotary pumps			
Lubricity requirement	(+)	++	++	++		
Lubricity specification	U.S.A.: none CA: SLBOCLE guideline	HFRR 460 µm max.	HFRR 460 µm max.	HFRR 460 µm max.		

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.


Samples from Summer 2002

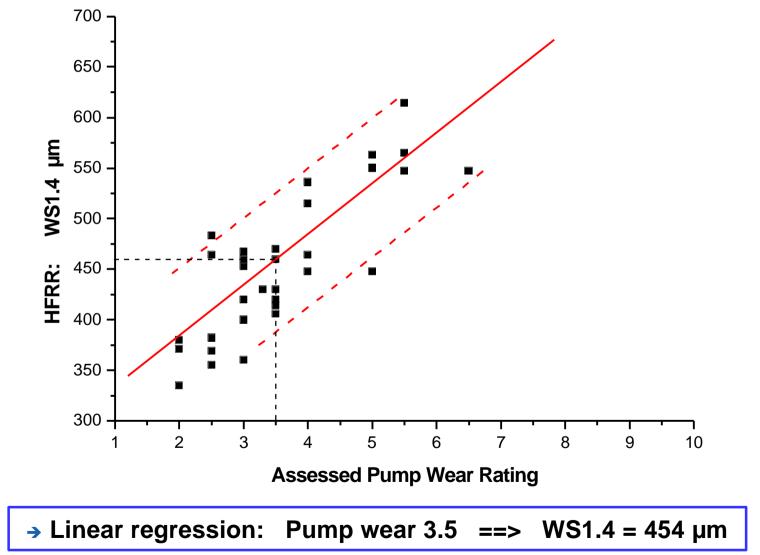
Property	Unit	U.S.A.	Europe	Assessment of
			(EN 590)	U.S.A. Quality
Density	kg/m³	813 863	820 845	wide range
Viscosity	c.St. (40 °C)	2.1 3.2	2.0 4.5	o.k.
Dist. 95% vol rec.	°C	324 344	< 360	o.k.
Total Aromatic Cont.	%	16 46	n.a.	many high numbers
Cetane No.		44 57	> 51	many low numbers
Sulphur	mg/kg	23 416	< 350	not o.k. for aftertreatment
Water	mg/kg	42 96	< 200	o.k.
Total Contamination	mg/kg	0.8 3.1	< 24	some high numbers
(particulates)				(EN590 limit too high)
Lubricity	µm (HFRR 60C)	351 648	< 460	80% of samples > 460 µm
Alcohol	% vol.	< 0.1	n.a.	o.k.



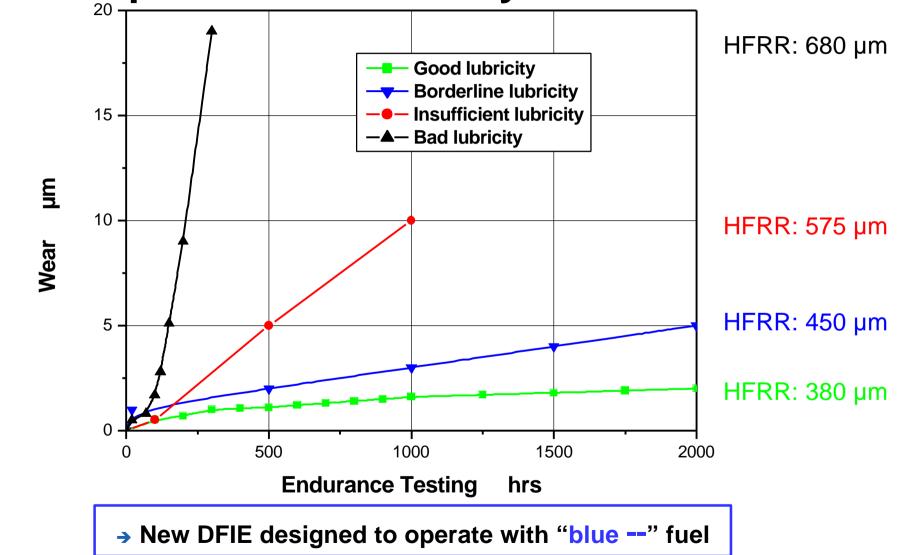
ISO 12156-1 Method

Test conditions:

Applied load	200 g ± 0.01 g		
Stroke length	1 ± 0.02 mm		
Frequency	50 ± 1 Hz		
Test duration	75 ± 0.1 min		
Fluid temperature	60 ± 2 °C		
Fluid volume	2 ± 0.20 ml		
Bath surface	6 ± 1 cm ²		



© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.


Table to Assess Pump Wear

Component	Wear rating: $1 - 3.5$ Durability + performance = 100%		Wear rating: 4 – 6 Durability reduced to 20 %		Wear rating: 7 – 10 Durability reduced to 1 % Immediate failure	
	Type of wear	Wear rate	Type of wear	Wear rate	Type of wear	Wear rate
Cam plate runway	rolling and abrasive	< 1 µm	seizure and fatigue	1 – 30 μm	fatigue	not determinable
cam plate centre	fretting	1 - 3 µm	fretting	3 - 10 µm	fretting	> 10 µm
cam plate claws	fretting	< 10 µm	rolling and fretting	10 - 20 μm	seizure	not determinable
Roller	rolling	< 1 µm	seizure and fatigue	1 - 5 μm	seizure and fatigue	not determinable
Roller bolt - point of contact to roller	rolling	< 1 µm	fretting and seizure	1 - 10 μm	seizure	>10 µm
 point of contact to roller ring 	fretting	< 10 µm	fretting	10 - 15 μm	seizure	>15 µm
Fuel pump - blades	fretting	< 10 µm	fretting	10 - 200 μm	fretting and seizure	not determinable
- raceway	fretting	1-2 µm	fretting	2 - 100 µm	fretting and seizure	not determinable

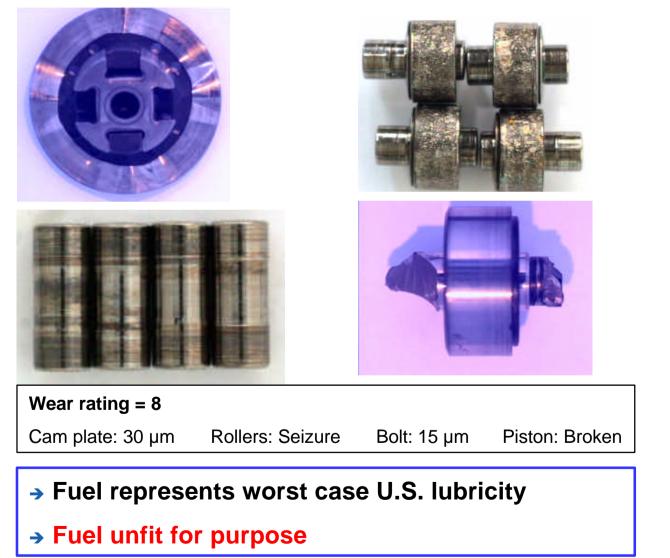
Pump wear must not exceed "green" zone to meet customer expectation

Pump Wear vs. Lubricity over Lifetime

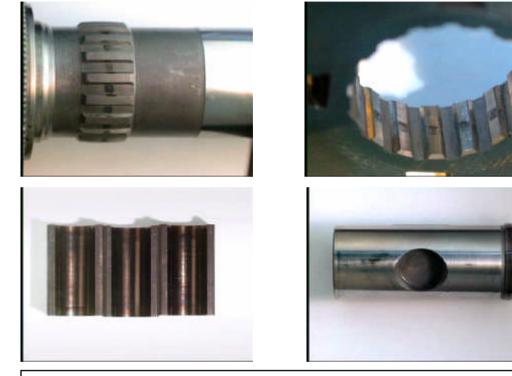
© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

VE - Rotary Pump with HFRR 450 µm Fuel

→ Fuel represents borderline EU quality


Fuel adequate for purpose

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH

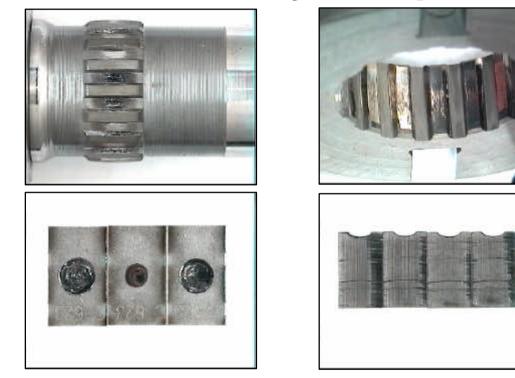

BOSCH

VE - Rotary Pump with HFRR 650 µm Fuel

VP44 - Rotary Pump with HFRR 400 µm Fuel

Wear rating = 3.0

Supply pump, roller shoes, feed pump tooth system, and timing piston: minor polishing


Fuel represents typical EU quality

→ Fuel fit for purpose

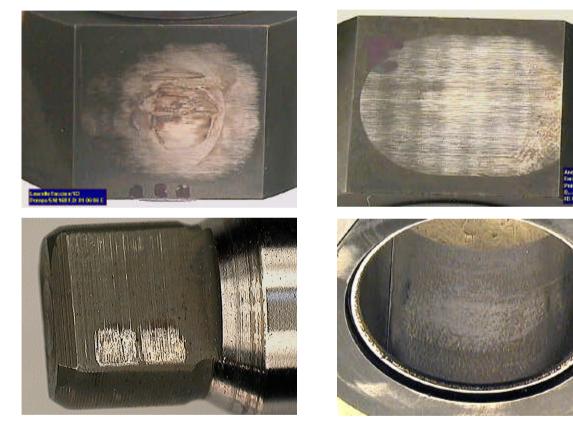
© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH

VP44 - Rotary Pump with HFRR 650 µm Fuel

Wear rating = 7.0

Supply pump, feed pump tooth system, high pressure piston and vanes: severe wear

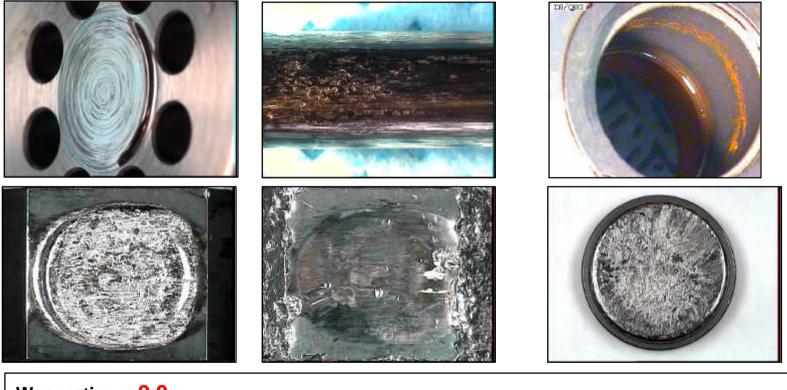
→ Fuel represents worst case U.S. lubricity


Fuel unfit for purpose

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH

BOSCH

Common Rail System with HFRR 460 µm Fuel


→ Fuel represents borderline EU quality

→ Fuel adequate for purpose

BOSCH

Common Rail System with HFRR 650 µm Fuel

Wear rating = 9.0

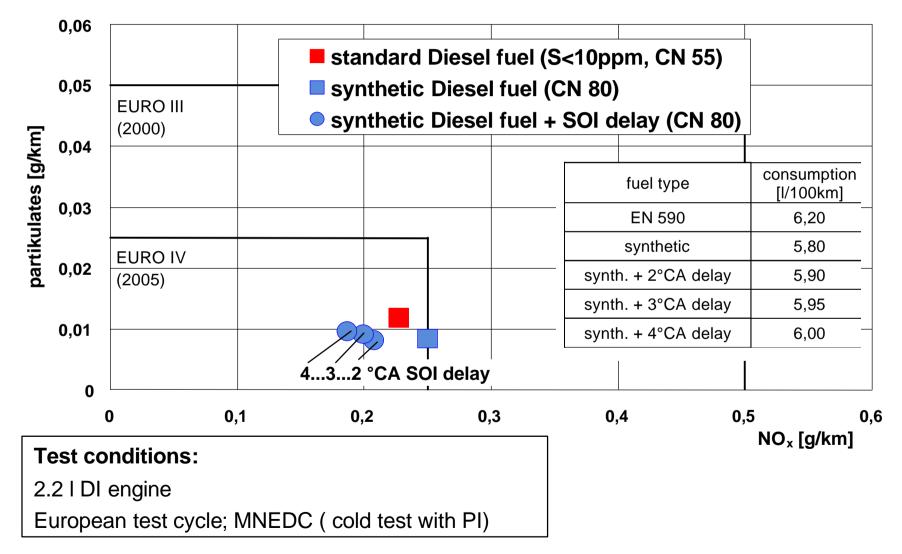
Piston: Seizure

Piston bottom center: 15 µm;

Bearing shell: Seizure; Polygon: \geq 1000 µm

→ Fuel represents worst case U.S. lubricity

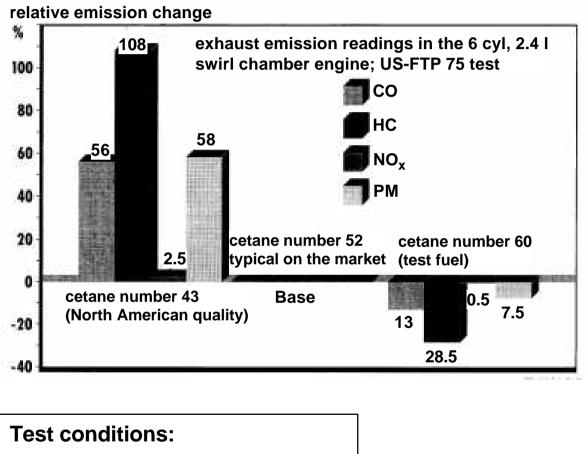
Fuel unfit for purpose



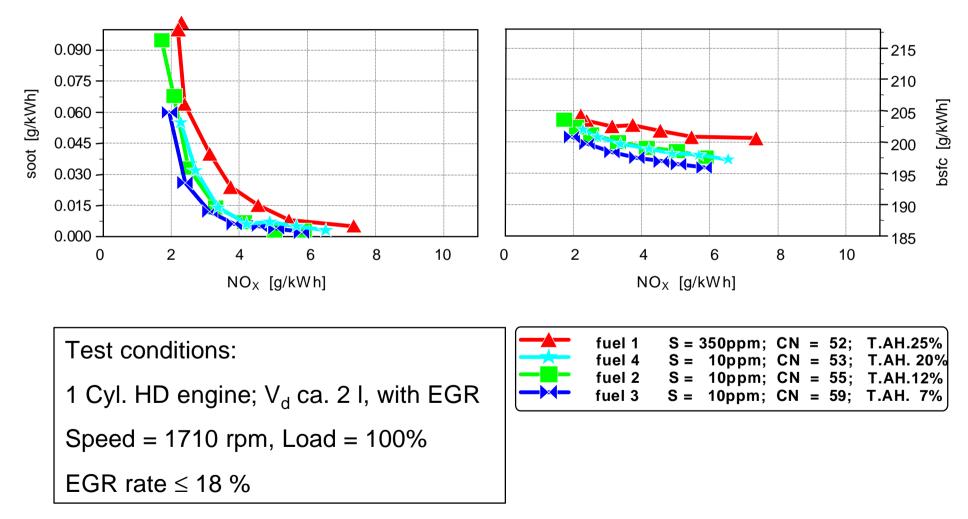
Samples from Summer 2002

Property	Unit	U.S.A.	Europe	Assessment of
			(EN 590)	U.S.A. Quality
Density	kg/m³	813 863	820 845	wide range
Viscosity	c.St. (40 °C)	2.1 3.2	2.0 4.5	o.k.
Dist. 95% vol rec.	°C	324 344	< 360	o.k.
Total Aromatic Cont.	%	16 46	n.a.	many high numbers
Cetane No.		44 57	> 51	many low numbers
Sulphur	mg/kg	23 416	< 350	not o.k. for aftertreatment
Water	mg/kg	42 96	< 200	o.k.
Total Contamination	mg/kg	0.8 3.1	< 24	some high numbers
(particulates)				(EN590 limit too high)
Lubricity	µm (HFRR 60C)	351 648	< 460	80% of samples > 460 µm
Alcohol	% vol.	< 0.1	n.a.	o.k.

NO_x and PM Reduction with CN 55 and 80 Fuels



© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.


NO_x and PM Reduction with CN 60 Fuels

6 cyl., 2.4 l, swirl chamber engine U.S.-FTP75 test

Better Trade-offs for Soot/ NO_x and Fuel Consumption/ NO_x with CN 52 R 59 Fuels

 $\ensuremath{\mathbb{C}}$ Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

Reasoning for HFRR

- → HFRR is an adequate test method
- → HFRR provides customer satisfaction
- \rightarrow HFRR 460 µm max. known to prevent field problems
- All high-pressure fuel-lubricated injection systems are exceedingly lubricity-sensitive

and require clean fuels (no free water and/or contamination)

- Common-rail and Rotary pumps require the same level of lubricity
- Lubricity specification in ASTM D975 needed ASAP
- → Spec. should not exceed HFRR: WS1.4 £ 460 µm (ISO 12156-1)
- → Bosch and DFIE industry willing to
 - share and validate experience
 - offer more tests and
 - cooperate with regulators (CARB, ...)

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights.

Klaus Meyer c/o Robert Bosch GmbH Corporate Research Dept. FV/FLM P.O.B. 106050 D - 70049 Stuttgart Germany

phone: +49-(0)711-811-6030 fax: +49-(0)711-811-267626 email: klaus.meyer@de.bosch.com Thomas C. Livingston c/o Robert Bosch Corporation Dept. AP/EHD2.1 38000 Hills Tech Drive Farmington Hills Michigan 48331 U.S.A.

phone: (248)-553-1386 fax: (248)-324-7288 email: tom.livingston@us.bosch.com