

# M272 Engine



287 HO M272 (FAH) 10/05/04

### Objectives

#### Students will be able to:

- identify differences between M112 and M272
- explain the camshaft adjusters operation
- identify major components of the M272
- explain function of the swirl flaps
- explain function of the temperature management system

### Contents

| Comparison                     | 4  |
|--------------------------------|----|
| Highlights                     | 6  |
| Motor mechanicals              | 9  |
| Oil level switch               | 12 |
| Crankcase ventilation          | 16 |
| Cylinder head                  | 18 |
| Intake manifold                | 29 |
| ME 9.7                         | 40 |
| Crank sensor                   | 46 |
| O2 sensors                     | 49 |
| Three way catalytic converters | 50 |
| Ignition coil                  | 52 |
| Mass airflow                   | 54 |
| Temperature management         | 55 |
| Fuel tank                      | 59 |
| Speed sensitive power steering | 64 |

#### M272 – M112 Comparison

M272 M112

**3.5 litre 3.2 litre** 

268 hp @ 6000 rpm 214 hp @ 5700 rpm

258 lb-ft @ 2500 to 5000 rpm 228 lb-ft @ 5700 rpm

Compression Ratio 10.7:1 Compression Ratio 10.0:1

Sparkplugs per cylinder 1 Sparkplugs per cylinder 2

ME 9.7 ME 2.8

Coil On Plug Double ignition coils

### Comparison



**Torque Nm** 

# New M272 introduced in the new SLK 171

Lets look at some highlights

### M272 HighLights

- M112 replacement
- 3.5 litre displacement
- Counter rotating balance shaft
- Stiffer engine with lateral main bearing attachments
- 4 valve continuously variable camshafts intake and exhaust (DOHC)



### M272 HighLights



- 90 degree V-6
- Two stage Intake manifold
- Turbulence flaps in the intake ports
- ME 9.7 control unit mounted on top of engine
- Electrically assisted thermostat
- No EGR valve
  - Both cams adjust

Lets take a look at what changed mechanically

#### **Motor Mechanicals**

- Based off of M112 engine
- Bore and Stroke increase compared to M112
- Die cast aluminum crankcase
- Silitec coated cylinder liners
- Starter openings both sides of block
- 8 lateral main bearing bolts



#### Crankshaft

- Crankshaft lighter as compared to M112
- Wider main bearings as compared to M112 used to reduce vibration
- Iron coated cast aluminum pistons



#### Balance shaft, familiar function

Oil sensor, now a switch

#### **Balance Shaft**





- Balance shaft similar to the M112
- Balance shaft rotates opposite crankshaft

#### Oil Level Switch

- Reed contact oil level switch S43 replaces B40
- Only one pin of the two pin connector used
- S43 mounted in oil pan
- Chain driven oil pump
- Vehicle equipped with an oil level dipstick





Partial and full load crankcase ventilation system

#### Crankcase Ventilation



Cylinder head

4 valves

DOHC

Cam adjusters

#### Cylinder Head

- New design cast aluminum cylinder heads
- 4 overhead camshafts (DOHC)
- 4 valves per cylinder, improve torque and horsepower compared to 3 valve engines
- Camshaft upper bearing surfaces integrated into cam housing cover
- Nickel coated high strength steel exhaust valves



### Cylinder Head

- 4 Cam adjusters
- 4 Cam Sensors
- ME can detect Cam position with ignition on
- Intake cam is chain driven and drives exhaust cam via gear



#### Chain Tensioner

- Step type chain tensioner with internal spring
- Located at the lower right front engine
- Must be manually reset if removed
- Failure to preset tensioner before assembly will result in engine damage



### Camshaft Timing Adjusters

- Vane type, oil pressure controlled adjusters
- Continuously variable
- 40° advanced for intake (from 4° BTDC to up to 36° ATDC)
- 40° retard for exhaust (from 30° BTDC to up to 10° ATDC)





### **Exhaust Cam Gear**



Note: Retaining nut at front timing adjuster is reverse thread

#### Camshaft Position Sensors

- 4 Hall effect sensors, one for each camshaft
- True Power On (TPO) sensor technology capable of detecting cam position with stationary engine
- Right and left camshaft signals staggered by 240° camshaft angle
- Signal is low in absence of a window



### Impulse Wheels

- Four impulse wheels used on the M272 mounted on the front of each camshaft timing adjuster
  - Each impulse wheel has a different part number
- The openings of the impulse wheels help ME determine the camshafts exact position
- Can only be used one time!
- If new impulse wheels are not used the pins could shear off causing massive damage to adjusters





Both locating pins sheared off when reinstalled

Gouging of mounting surface

#### **Exhaust Cam Gear**

- Exhaust Cam 2 piece gear
- Smaller outer gear spring loaded for noise reduction
- Gear must be held in place prior to disassembly
- Segment Ring must be replaced once removed
- Adjuster bolt reverse threaded





### Camshaft Timing Network



B6/4 – Camshaft position sensor (intake left)

B6/6 – Camshaft position sensor (exhaust left)

B6/7 – Camshaft position sensor (exhaust right)

B6/5 – Camshaft position sensor (intake right)

B11/4 – Engine coolant temperature sensor

B70 - Crankshaft hall sensor

**B2/5 - MAF** 

N3/10 - ME 9.7

Y49/5 – Camshaft timing control solenoid (exhaust right)

Y49/7 – Camshaft timing control Solenoid (Intake right)

Y49/4 – Camshaft timing control solenoid (intake left)

Y49/6 – Camshaft timing control Solenoid (exhaust left)

#### **Camshaft Position**

- Remove camshaft sensors
- Align balancer (305°) to front cover pointer
- Check impulse wheels stamped numbers
- If above line up properly cam positions are correct







### Camshaft Timing Basic Position

- Align balancer to 40° ATDC to front cover pointer
- 2. Front cover pointer
- 3. Upper camshaft marks
- 4. Camshaft marks aligned to head





#### Intake

Variable runners

Swirl flaps

#### Intake Manifold

- Magnesium cast sectional intake manifold with integrated vacuum reservoir
- Variable intake runner
- Short runner for higher RPM
- Long runner for lower RPM
- Swirl-Flaps also added providing better fuel mixture



### Intake Components



12 Intake manifold with integral vacuum reservoir

12/1 Swirl flap shaft, left cylinder bank

12/2 Swirl flap shaft, right cylinder bank

12/3 Longitudinal switch flap shaft, right cylinder bank

12/4 Longitudinal switch flap shaft, left cylinder bank

22/6 Intake manifold switchover diaphragm 22/9 Swirl valve switchover diaphragm

Y22/6 Variable intake manifold switchover valve Y22/9 Intake manifold swirl flap switchover valve

#### Variable Length Intake Manifold

- Engine load over 50% from approx.
  1750 RPM intake flaps closed (long runner)
  - Better cylinder filling and increased torque
- Above 3900 RPM switchover solenoid deactivated via ME intake flaps open (short runner)
  - Incoming air follows short runner
- Unlike M112, M272 has two diaphragm actuators





### Intake Functional Diagram



A – Long runner

B – Short runner

1- Switchover flaps

12 – Intake manifold with integral vacuum reservoir

B2/5 - Hot film mass airflow sensor

22/6 – Intake manifold switchover diaphragm

Y22/6 – Variable intake manifold switchover valve

M16/6 – Throttle valve actuator

B70 - Crankshaft hall sensor

N3/10 - ME 9.7

### Swirl Flaps

- Under certain operating conditions intake air is swirled via swirl flap for improved mixture process
- Vacuum diaphragm driven by ME controls flap position
- Swirl flap position sensors (hall sensors) monitor
   2 magnets attached to swirl flap actuating shafts
   to determine flap position (activated/not activated)
- Sensors located at rear of intake manifold



Swirl flap position sensors

## Swirl Flaps



A = Non swirl not active

B = Swirl active

# Swirl Flaps



# Swirl Flap Operating Parameters



#### Swirl Flap Functional Diagram



12 - Intake manifold

1 – Swirl flap

22/9 – Aneroid capsule swirl flap Switchover

B11/4 – Coolant temperature sensor

B70- Crankshaft hall sensor

B28/9 - Left intake manifold swirl

flap position sensor

B28/10 – Right intake manifold swirl flap position sensor

B2/5 – Hot film mass airflow sensor

M16/6 – Throttle valve actuator

N3/10 - ME 9.7

Y22/9 – Intake manifold swirl flap switchover valve

A – Swirl flap recessed (no swirl)

B – Swirl flap outward (swirl)

ME 9.7

Inputs

Outputs

#### ME 9.7

#### Control Module function:

- Cylinder sequential injection
- Single spark plug coil (control and diagnostics)
- Electronic throttle plate positioning
- LIN communication with alternator
- Turbulence flap regulation
- Variable length intake runner control
- After run process



N3/10 - ME 9.7

Note: When erasing DTC's you must wait for the after run function to finish otherwise faults may remain.

#### ME After Run Process

- ME performs an after run process when circuit 15 is switched off
- After run is determined by ME and required to store inputs
- After run time is typically 5 seconds but can take several minutes longer depending on various functions (temperature management, OBD, DAS3 etc.)
  - at 176°F approx. 4 seconds, at 68°F approx. 60 seconds and at -22°F approx. 150 seconds
  - After cycling key off, must wait ~ 150 seconds
- This is the period in which the fault memory is over-written

### ME 9.7 Inputs/Outputs



Inputs

Outputs

#### ME 9.7 Inputs/Outputs Legend

- A16/1 Right knock sensor
- A16/2 Left knock sensor
- B2/5 Hot film mass air flow sensor
- B4/3 Fuel tank pressure sensor
- B6/4 Left intake camshaft hall sensor
- B6/5 Right intake camshaft hall sensor
- B6/6 Left exhaust camshaft hall sensor
- B6/7 Right exhaust camshaft hall sensor
- B11/4 Coolant temperature sensor
- B28 Intake manifold pressure sensor
- B28/9 Left intake manifold swirl flap position sensor
- B28/10 Right intake manifold swirl flap position sensor
- B37 Accelerator pedal sensor
- B70 Crankshaft hall sensor
- G2 Alternator
- G3/3 Left O2 sensor upstream of TWC
- G3/4 Right O2 sensor upstream of TWC
- G3/5 Left O2 sensor in TWC
- G3/6 Right O2 sensor in TWC
- M16/6 Throttle valve actuator

- N10/1 Driver SAM
- N10/1kR Circuit 87 relay
- N10/1kS Starter relay
- N10/1kO Air pump relay
- N10/2 Rear SAM
- N10/2kA Fuel pump relay
- S40/3 Clutch pedal switch
- S40/5 Start enable clutch pedal switch
- S43 Oil level check switch
- M4/7 Suction fan
- T1/1 -6 Ignition coils 1 to 6
- Y10/1 Power steering pump pressure regulator valve
- Y22/6 Variable intake manifold switchover valve
- •Y22/9 Intake manifold swirl flap switchover valve
- Y32 Air pump switchover valve
- Y49/4 Left camshaft intake solenoid
- Y49/5 Right camshaft intake solenoid
- Y49/6 Left camshaft exhaust solenoid
- Y49/7 Right camshaft exhaust solenoid

#### ME 9.7 Network Signals



N73 - EIS N15/5 – Electronic selector lever module control unit A1 – Instrument Cluster N47-5 – ESP and BAS control unit N80 – Steering column module Y3/8n4 - Fully integrated transmission control unit X11/4 – Diagnostic connector N93 – Central gateway control unit N22 - AAC control and operating unit N2/7 - Restraint systems

# ME 9.7 Network Signals



Crank sensor (Hall)

O2 sensors

Three way catalytic converters

Ignition coil

Mass airflow

#### Crank Sensor

- Hall effect sensor (not inductive)
- Output signal switches between ground and 5 volts
- Incremental ring gear 58 teeth (60–2) is carry over



#### Sensor Signals



- 1 Crank angle (CKA)
- 2 Ignition TDC cylinder (in firing order)
- 3 Signal of crankshaft Hall sensor (B70)
- 4 Rpm signal TNA
- 5 Camshaft Hall sensor intake signal, left and right
- 6 Camshaft hall sensor exhaust signal, left and right

- A = Recognition of ignition TDC of cylinder 1
  - second negative signal edge of crankshaft hall sensor after the gap
  - Signals 5 and 6 are "LOW"
  - Rpm signal (4) changes from "HIGH" to "LOW"

#### O2 Sensors

- Upstream wide-band O2 sensors as known from the M271 and OM648
- Downstream planar type O2 sensors mounted in catalytic converter housing
- Three Way Catalytic Converters (TWC)



G3/3 – Left upstream O2 sensor

G3/5 – Left downstream O2 sensor

158 – Catalytic converter

G3/4 – Right upstream O2 sensor

G3/6 – Right downstream O2 sensor

#### Three Way Catalytic Converters

- Two ceramic monoliths with 600 cells each
- Reduces Hydrocarbons (HC)
- Reduces Carbon Monoxide (CO)
- Reduces Nitrogen Oxides (NOX)
- Downstream O2 sensor mounted between the monoliths



#### O2 Sensor Networking



17 – Fuel rail

158 – Catalytic converter

B2/5 – Hot film mass airflow sensor

B11/4 – Coolant temperature sensor

B70 - Crankshaft hall sensor

B37 – Accelerator pedal sensor

G3/3 – Left upstream O2 sensor

G3/5 – Left downstream O2 sensor

G3/4 – Right upstream O2 sensor

G3/6 – Right downstream O2 sensor

N3/10 - ME 9.7

Y62 – Fuel injectors

### Ignition Coil

- Individual coil on plug
- Driver located inside coil not in ME 9.7
- Each coil controlled separately
- Diagnostic information sent back to ME
- Bi-directional communication with ME





- Pin 1 batt
- Pin 2 ground
- Pin 3 ground
- Pin 4 control/diagnosis

#### Ignition Networking



A16/1 – Right knock sensor

A16/2 – Left knock sensor

B6/4 – Left intake camshaft hall sensor

B6/5 – Right intake camshaft hall sensor

B6/6 - Left exhaust camshaft hall sensor

B6/7 – Right exhaust camshaft hall sensor

B2/5 – Hot film mass airflow sensor

B11/4 – Coolant temperature sensor

B70 - Crankshaft hall sensor

B37 – Accelerator pedal sensor

M16/6 – Throttle valve actuator

N3/10 - ME 9.7

N47-5 – ESP and BAS control unit

T1/1 through T1/6 – ignition coil for cylinders 1 to 6

Y3/8n4 - Fully integrated transmission

control (VGS) control unit

X11/4 – Data link connector

#### Hot Film Mass Airflow Sensor

- Frequency signal from Mass Airflow to ME
- Integrated Intake air temperature sensor used



#### Temperature management

**Thermostat** 

Control

#### Temperature Management

- Coolant Temperature is regulated via Me 9.7
- 3 plate thermostat
- Regulates temperature from 185°F to 221°F (85°C to 105°C)
- Heating element in thermostat energized to heat thermostat
- 4 operating modes dependent on engine temperature and load



#### Temperature Management



- 1 To radiator
- 2 From engine
- 3 To engine
- A Stationary coolant (cold start)
- B Circuit for engine and heat exchanger
- C Active after 208°F (98°C), after start or ambient temp. above 82°F (28°C)
- D Position for max radiator operation

# Temperature Management



# Fuel tank Fuel pump control

#### Fuel Tank

- Magnesium cover helps protect tank
- Two layer steel tank with 18.4 gallon capacity
- In tank fuel supply system operates with 3.8 bar pressure
- Fuel filter with pressure regulator
- Returnless fuel system



#### **Fuel Networking**



A Electrical line B Fuel pipe C Purge line

> 12 Intake manifold 17 Fuel rail 17/1 Fuel pressure reservoir 45 Fuel filler neck, with ORVR 51 Pressure gauge connection 55/2 Fuel filter 55/2a Fuel pressure regulator 3.8 bar

75 Fuel tank
76 Vent valve, except
USA
77 Activated charcoal
canister
B4/3 Fuel tank pressure
sensor
M3 Fuel pump assembly
(with integral fuel pump
(FP))

N10/2kA Fuel pump relay N3/10 ME-SFI control unit Y58/1 Purge control valve Y58/4 Activated charcoal filter shutoff valve Y62 Fuel injection valves

#### Fuel Pump Control

- Fuel pump controlled via fuel pump relay (N10/2kA)
- Fuel pump Relay located in rear SAM (N10/2)
- Fuel pump relay energized via ME
- Fuel pump runs ~ 1 second after ignition on



N10/2 – Rear SAM N10/2kA – Fuel pump relay

# Fuel Supply Circuit In Tank



#### Access Point To Fuel Filter and Pump



Tank Pressure Sensor

Connector For pump And level sensor

# Fuel Pressure Regulator



Filter

Pressure regulator

A-from pump
B-return to
splash bowl
C-filtered fuel
to engine

#### Fuel Level Sensor



# Splash Bowl



pump

Swivel 2 retainers to remove pump

# Fuel Pump





N3/10 – ME 9.7 A1 – Instrument cluster N10/2 – Rear SAM

B4 – Fuel level sensor

75 – Fuel tank

#### Speed Sensitive Power Steering

#### Speed Sensitive Power Steering

- Gives the customer firmer feel in steering at higher speeds and more assist for parking maneuvers at slower speeds
- ME 9.7 now controls functions of the Speed Sensitive Power Steering system
- The valve port is adjusted for steering support required for the current driving condition and is dependent on the following input signals:
  - Engine speed
  - Vehicle speed (Via CAN)
  - Steering angle (Via CAN)
  - Steering angle speed (Via CAN)

#### Speed Sensitive Power Steering

- The pressure regulator valve controls the valve port and is rigidly connected to the power steering pump
- It is actuated according to a performance map with a duty cycle of 10 to 90% and regulates the amount delivered to the power steering pump at between 2 and 9 liters/minute
- The pressure regulator valve is opened wide for ignition ON and during engine start
- In the case of faults on the input signals or on the pressure regulator valve, actuation is interrupted immediately and the maximum support is available from the power steering pump

# Speed Sensitive Power Steering Networking



B70 Crankshaft Hall sensor N3/10 ME-SFI control unit N47-5 ESP and BAS control unit N80 Steering column module Y10/1 Power steering pump pressure regulator valve



Connector 1 Motor connector (M) Connector 2 Vehicle connector (F)

| Pin | Signal/Signal info                                   |
|-----|------------------------------------------------------|
| 1   | Camshaft timing adjuster intake, right bank          |
| 2   | Not used                                             |
| 3   | Injection valve end stage, cyl.6                     |
| 4   | Not used                                             |
| 5   | Pressure control valve steering assist pump          |
| 6   | Ignition signal 1 Ignition coil cyl.1                |
| 7   | Ignition signal 3 Ignition coil cyl,3                |
| 8   | Ignition signal 5 Ignition coil cyl.2                |
| 9   | Not used                                             |
| 10  | Camshaft sensor exhaust right bank                   |
| 11  | Lambda sensor before CAT right bank (nernst voltage) |
| 12  | Lambda sensor before CAT left bank (trim resistor)   |
| 13  | Signal lambda sensor im CAT left bank                |
| 14  | Lambda sensor before CAT right bank (virtual ground) |
| 15  | Sensor ground 1                                      |
| 16  | Sensor ground 2                                      |
| 17  | (Sensor ground)                                      |
| 18  | Not used                                             |
| 19  | Switch over solenoid valve (EUV) turbulance flap     |
| 20  | Not used                                             |
| 21  | Variable intake manifold valve                       |
| 22  | Injection valve end stage, cyl.4                     |
| 23  | Injection valve end stage, cyl.1                     |

| 24  | Camshaft sensor exhaust right bank                  |
|-----|-----------------------------------------------------|
| 25  | Heater lamba sensor in CAT left bank                |
| 26  | Injection valve end stage, cyl.5                    |
| 27  | Heater lamba sensor in CAT right bank               |
| 28  | Not used                                            |
| 29  | Not used                                            |
| 30  | Ignition signal 2 Ignition coil cyl.4               |
| 31  | Ignition signal 4 Ignition coil cyl.6               |
| 32  | Ignition signal 6 Ignition coil cyl.5               |
| 33  | Not used                                            |
| 34  | Camshaft sensor exhaust left bank                   |
| 35  | Lambda sensor before CAT left bank (Nernst voltage) |
| 36  | Lambda sensor before CAT left bank (pump voltage)   |
| 37  | HFM – Signal secondary air pump (SULEV – not USA)   |
| 38  | Lambda sensor before CAT left bank (virtual Ground) |
| 39  | Sensor ground throttle plate potentiometer          |
| 40  | Sensor ground lambda sensor in CAT left bank        |
| 41  | Signal lambda sensor in CAT right bank              |
| 42  | 5V Sensor power supply 1                            |
| 43  | 5V Sensor power supply throttle plate potentiometer |
| 44  | 5V Sensor power supply 2                            |
| 45  | LIN - interface                                     |
| 46  | Not used                                            |
| 47  | Injection valve end stage, Cyl.3                    |
| 48  | Carnshaft tirning adjuster intake left bank         |
| 49  | Heater lambda sensor before CAT right bank          |
| 50  | Not used                                            |
| 51  | Injection valve end stage, Cyl.2                    |
| 52  | Not used                                            |
| 53  | Secondary air valve                                 |
| 54  | 3-plate thermostat                                  |
| 55  | Not used                                            |
| 56. | Camshaft sensor intake left bank                    |
| 57  | Camshaft sensor intake right bank                   |
| 58  | Not used                                            |
| 59  | Signal A knock sensor left bank                     |
| 60  | Signal A knock sensor right bank                    |
| 61  | Lambda sensor before CAT right bank (trim resistor) |
| 62  | Not used                                            |

| 63 | Position sensor turbulance flap left bank          |
|----|----------------------------------------------------|
| 64 | Not used                                           |
| 65 | Not used                                           |
| 66 | Signal coolant temperature sensor                  |
| 67 | Not used                                           |
| 68 | Not used                                           |
| 69 | Signal hot film MAF                                |
| 70 | Not used                                           |
| 71 | Heater shut off valve                              |
| 72 | Not used                                           |
| 73 | Heater lambda sensor before CAT left bank          |
| 74 | Motor (plus) throttle plate motor                  |
| 75 | Motor (minus) throttle plate motor                 |
| 76 | Not used                                           |
| 77 | Not used                                           |
| 78 | Not used                                           |
| 79 | Not used                                           |
| 80 | Ground crankshaft sensor                           |
| 81 | Signal crankshaft sensor                           |
| 82 | Not used                                           |
| 83 | Signal B knock sensor left bank                    |
| 84 | Signal B knock sensor right bank                   |
| 85 | Lambda sensor before CAT right bank (pump current) |
| 86 | Signal manifold absolute pressure sensor           |
| 87 | Oil pressure switch                                |
| 88 | Signal throttle plate potentiometer 1              |
| 89 | Position sensor turbulance flap left bank          |
| 90 | Not used                                           |
| 91 | Not used                                           |
| 92 | Not used                                           |
| 93 | Reference signal (temperature) hot film MAF        |
| 94 | Oil level switch                                   |
| 95 | Camshaft timing adjuster exhaust left bank         |
| 96 | Not used                                           |

# Questions?