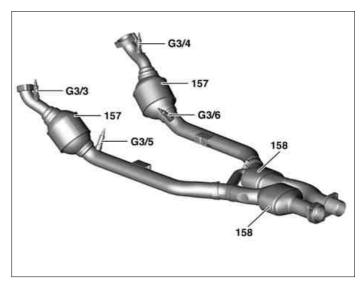
ENGINE 113.986 ENGINE 113.987


ENGINE 113.988 up to Model Year 8 ENGINE 113.989 up to Model Year 8

157 Firewall catalytic converter158 Underfloor catalytic converter

G3/3 Left O2 sensor upstream of the TWC
G3/4 Right O2 sensor upstream of the TWC
G3/5 Left O2 sensor downstream TWC
G3/6 Right O2 sensor, downstream of TWC

Task

The ${\rm O}_2$ sensors detect levels of residual oxygen in the exhaust and transmit corresponding voltage signals to the ME control unit (N3/10).

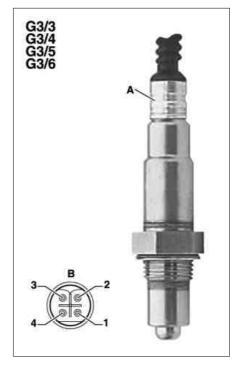
P07.04-2161-11

O₂ sensors upstream of the catalytic converter (control sensors):

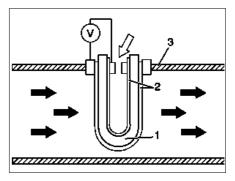
- Lambda control
- Self adaptation of the mixture formation
- Function chain test

Design

- G3/3 Left O2 sensor upstream of TWC
 G3/4 Right O2 sensor upstream of TWC
 G3/5 Left O2 sensor downstream of TWC
 G3/6 Right O2 sensor, downstream of TWC
- A Connection cable (cast in)
- B Connector (4-pin)
 - Pin 1 Sensor heater voltage
 - Pin 2 Sensor heater ground
 - Pin 3 O₂ sensor signal ground
 - Pin 4 sensor signal


The sensors used are potential-free insulated O $_{\mathrm{2}}$ planar sensors.

The active sensor ceramic consists of a gas-permeable ceramic body manufactured from zirconium dioxide. A protective tube with several slots protects the ceramic body from mechanical stresses and temperature jumps.


They are connected electrically by means of a 4-pin connector. The ground cable for the sensor signal is routed individually up to the ME control unit for each O $_2$ sensor.

${\rm O}_2$ sensors downstream of the catalytic converter (master sensors):

- Two-sensor control
- Monitoring three way catalytic converter effect

P07.04-2258-03

P07.61-0403-01

Functional principle

- 1 Sensor ceramic
- 2 Electrodes at boundary surfaces
- 3 Exhaust pipe

Arrows black: exhaust gases white: outside air

Function

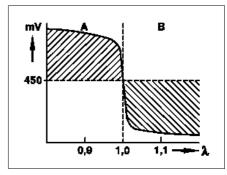
The sensor ceramic is conductive for oxygen ions from approx. $300\,^\circ\!\text{C}.$ If the oxygen concentration on both sides of the sensor ceramic differs, a voltage is produced at the boundary surfaces as a result of the particular properties of the sensor ceramic (Nernst voltage). This Nernst voltage produces the O $_2$ sensor signal which is a measure of the residual oxygen in the exhaust gas.

The analysis circuit for the O $_2$ sensor signal (in the ME control unit) produces a so-called sensor backvoltage of about 450 mV on the O $_2$ sensor.

If the O_2 sensor is cold, the sensor internal resistance is so high that the O_2 sensor voltage is initially the same as the back voltage irrespective of the mixture composition.

The backvoltage at the ME control unit can be measured to the ground for the O $_2$ sensor signal when the O $_2$ sensor is disconnected.

O₂ sensor voltage

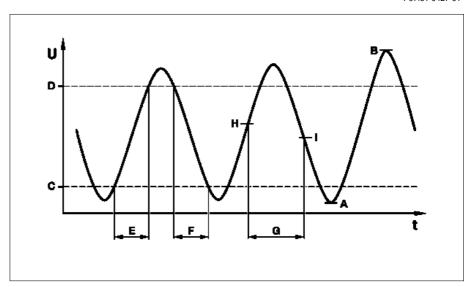

- A Rich mixture
- B Lean mixture
- λ Lambda (fuel-air ratio)

The O_2 sensor signal experiences a steep voltage jump at the transition from a rich to a lean mixture (λ =1). This property is utilized for the lambda closed-loop control.

O₂ sensor heater

The ${\rm O}_2$ sensors are heated in order to rapidly warm up the sensor ceramic to operating temperature. The sensor heater is actuated by the ME control unit over a ground signal. The current in the cold state is increased approximately by a factor of 4.

The sensor heater is switched off at coolant temperatures below approx. 20 °C and at high engine speeds in order to avoid overheating (thermal shock).



P07.61-0427-01

Curve of the O ₂ sensor voltage (shown schematically)

- A Minimum sensor voltage (lean mixture)
- B Maximum sensor voltage (rich mixture)
- C Lower limit value for time measurement
- D Upper limit value for time
- measurement

 E Duration of sensor state change for rich-lean transition
- F Duration of sensor state change for
- rich-lean transition
 G Duration between sensor state change
- H Threshold for rich range (e.g. greater than 475 mV)
- I Threshold for lean range (e.g. less than 425 mV)
- U Sensor voltage in mV
- t Time in ms

P07.04-2121-05

Faults on the O $_{\rm 2}$ sensor can be detected by means of the O $_{\rm 2}$ sensor signal.

Defined limit values must be maintained for the O $_2$ sensor voltage, the cycle duration and the sensor status change.